PERIODIC SAFETY FACTOR ASSESSMENT CFR 257.73(e)(1)

Pond 21, Pond 22, Pond 23, and Waste Water Sludge Pond

Oklaunion Power Station Vernon, Texas

October, 2016

Prepared for: Public Service Company of Oklahoma

Prepared by: American Electric Power Service Corporation

1 Riverside Plaza

Columbus, OH 43215

Document ID Number: GERS-16-086

CCR PONDS AT OKLAUNION POWER STATION VERNON, TEXAS POND 21, POND 22, POND 23, AND WWSP

PREPARED BY

M. Lish Saudi

DATE

10/4/2016

REVIEWED BY

 \mathcal{D} \wedge \wedge \wedge DA

10/5/2016

Mohammad A. Ajlouni, Ph.D.,P.E.

APPROVED BY

DATE

10/10/2018

Manager - AEP Geotechnical Engineering

PROFESSIONAL ENGINEER

SEAL & SIGNATURE

I certify to the best of my knowledge, information, and belief that the information contained in this the safety factor assessment meets the requirements of 40 CFR 257.73(e)

POND 21, POND 22, POND 23, AND WWSP INITIAL SAFETY FACTOR ASSESMENT OKLAUNION POWER STATION

Table of Contents

INTRODUCTION		1
PROJECT INFORMATION		1
SLOPE STABILITY ANALYSIS		1
Soil Parameters	2	
Reservoir Elevations and Phreatic Surface	2	
Ground Acceleration Coefficient		
Liquefaction Assessment	3	
Rapid Drawdown	3	
SLOPE STABILITY ANALYSIS RESULTS		4
CONCLUSIONS		4

LIST OF FIGURES

rigule 1 - Location Maj	Figure	1 –	Location	Μa	ır
-------------------------	--------	-----	----------	----	----

Figure 2 – CCR Pond Location Map

Figure 3 – Embankment Model

Figure 4 - Slope Stability Analysis - Static Load

Figure 5 - Slope Stability Analysis - Seismic Load

Figure 6- Slope Stability Analysis - Maximum Pool Load

Figure 7 - USGS National Hazard Map - 2008

Figure 8 - Interactive Deaggregations from USGS Geological Hazards Science Center

Figure 9 – "Response of Soil Sites During Earthquakes"

Figure 10 - Slope Stability Analysis - Rapid Drawdown

APPENDICES

Appendix A – Geotechnical Data Report

INTRODUCTION

In April of 2015, the USEPA formally published national regulations for disposal of coal combustion residuals (CCR) from electric utilities. As part of the rule, the owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the CCR impoundments are in accordance with the rules. This report provides the documentation needed to fulfill the requirements of 40 CFR § 257.73(e), *Periodic Safety Factor Assessments*. AEPSC (American Electric Power Service Corporation) Civil Engineering has performed a slope stability analysis of the dam impounding Pond 21, Pond 22, Pond 23 and WWSP at Oklaunion Power Station.

PROJECT INFORMATION

The Oklaunion Power Station, located near Vernon, TX, consists of a single 690 MW coal fired scrubbed unit burning PRB coal. (Figure 1 for Location Map). The electric generating unit was commissioned in the early 80's as a Zero Liquid Discharge (ZLD) facility. CCR ponds were constructed and include two 5+ acre ponds for bottom ash storage and dewatering (Pond 21 and Pond 22), a 13+ acre pond for fly ash storage and dewatering (Pond 23), and a 22+ acre pond for Waster Water and Sludge storage and dewatering. (Figure 2 for Pond Location Map).

SLOPE STABILITY ANALYSIS

Slope stability analyses were performed to document that the existing conditions fulfill the requirements of 40 CFR § 257.73(e), *Periodic Safety Factor Assessments*. The following factors of safety requirements were evaluated.

- 1. The calculated static factor of safety under long-term, maximum storage pool loading condition must equal or exceed 1.50
- 2. The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.
- 3. The calculated seismic factor of safety must equal or exceed 1.00
- 4. For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20

Existing slope of 3H:1V for inboard and outboard were used in the slope stability analysis. The geometry of the embankment slopes and bottoms of the pond were determined based on the 1987 construction drawings. Soil strength and design parameters were developed based on the results of field and laboratory testing.

Safety factors were determined using SLOPE/W by Geo-Slope International. Mohr-Coulomb failure criterion was assumed for the material and Spencer's Limit Equilibrium Method was used in the program to perform 2-Dimensional limit equilibrium stability analysis to solve minimum factors of safety. Seismic analysis was performed based on the pseudo-static slope stability approach using modified peak horizontal ground accelerations. Figure 3 shows embankment model used to perform slope stability analysis with the computer program Geo Studio Slope/W. The embankment model includes the soil layers, the estimated phreatic surface, and maximum reservoir water levels.

SOIL PARAMETERS

Soil parameters used were based on the Geotechnical Data Report from borings taken in June 2016, See Appendix A. Due to similar embankment geometry and similar soil characteristics that were revealed within each embankment, one typical cross-section with soil parameters taken for soil boring B-1 was analyzed as a representation of all ponds' upstream and downstream slopes. See Appendix A for soil boring locations.

According to the Geotechnical Data Report, the CCR pond dikes are made of clayey soil material until reaching claystone bedrock at a depth ranging from 15 ft to 25 ft below surface. The embankment clay material is made of medium stiff to stiff lean clays (CL) with trace amounts of gravel. Natural moisture content varied from 11 to 18 percent and the SPT N-values ranged from 6 to 14 blows per foot. For the analysis the claystone bedrock was treated as an impenetrable material as this is where augering refusal was reached. The soil parameters were derived for laboratory tests completed on multiple samples from each soil boring. Laboratory testing consisted of moisture content, Atterberg Limit, grain size distribution, triaxial shear and permeability tests. Table 1 summarizes the soil design parameters used for this analysis.

The original construction drawings show that the inboard slopes were lime stabilized for slope stability. Strength gain from the lime treatment was assumed negligible for long term conditions as the slope is exposed to moisture and freeze/thaw cycles.

Table 1 - Material Parameters

Material Layer	Unit Weight (pcf)	Cohesion (psf)	Friction Angle (deg)	Source of Data
Lean Clay (drained)	117	330	28	Soil boring investigation
Lean Clay (undrained)	117	375	20	Soil boring investigation
Claystone Bedrock	IP	IP	IP	N/A

Notes: N/A – Not Applicable, IP- Impenetrable material

RESERVOIR ELEVATIONS AND PHREATIC SURFACE

Piezometers were installed during the site investigation phase. Piezometers were placed in or near the boring location at each of the embankments. See Geotechnical Data Report for piezometer and boring locations, Appendix A. Ground water was encountered during the site investigation. Soil boring B-1 discovered water at approximately 16.8 ft below surface. Since there was no groundwater encountered within any of the other soil borings, B-1 GW elevation was used for the stability analysis.

The elevation of the reservoir for the long-term storage pool loading was an averaged from the 7 day inspection submitted documents, an elevation of 1213 ft mls was used for both the long term storage pool loading analysis and seismic analysis (Figure 4 and Figure 5).

The surcharge maximum pool level was based on 100-year 24-hour rainfall event, as required by the CCR rules for low hazard dams. This rain event was derived from the Rainfall Frequency Atlas of the United States prepared by the Weather Bureau, 1963. The rainfall event for Vernon, Texas produced approximately 8.3 inches. Since the ponds analyzed within this report do not have outlet structures or

spillways, the maximum pool level was determined by adding the rain fall event to the normal pool elevation. An elevation of 1213.7 ft-msl was used for the maximum surcharge pool loading (Figure 6).

GROUND ACCELERATION COEFFICIENT

The procedure below describes determination of the ground acceleration coefficient used in the (seismic) analysis. The acceleration coefficient represents earthquake effects on the slope stability.

- 1. The 2%, 50-year statistical analysis was used to obtain the Peak Ground Acceleration at the rock interface (PGA_{rock}). Using the USGS National Hazard Maps, The PGA_{rock} value for this site was 0.06g, see Figure 7 and 8.
- The PGA_{rock} was adjusted to account for earthquake magnitude amplification through the overlying soils/embankment materials. The adjusted PGA (PGA_{adjusted}) was determined from Idriss, (1990), "Response of Soft Soil Sites During Earthquakes,", see Figure 9.
 Based on this figure the the PGA_{adjusted} is 0.14g.
- 3. The earthquake acceleration "a," is determined based on the PGA_{adjusted} using the following equation, taken from Earthquake Engineering Handbook: $a = 0.5 * PGA_{adjusted} = 0.5 * 0.14g$ Therefore, a = 0.070g.
- 4. The pseudo-static coefficient, "k," is then input into the SLOPE/W Geoslope program to model the effects of seismic loading. The pseudo-static coefficient is represented by the following equation:

$$k = \frac{a}{g} = \frac{0.070g}{g} = 0.070$$

LIQUEFACTION ASSESSMENT

Liquefaction of soils occurs when horizontal shearing stresses exceed the strength of existing loose saturated soils. This sudden loss of shear strength and subsequent soil structure is typically associated with earthquake induced horizontal movement. Generally, clean sandy soils below the groundwater level are susceptible to liquefaction conditions during an earthquake. The embankment soils at Oklaunion Power Station are predominantly lean clays (CL) and it is determined that the liquefaction potential at the site is low. No further liquefaction analysis was completed to show that the embankment and foundation materials are not susceptible to liquefaction under the design seismic event.

RAPID DRAWDOWN

Although there is no apparent mechanism in place for an uncontrolled drawdown of the water level and it is not require by the CCR rules, to determine a worst case factor of safety calculation, a rapid drawdown analysis was performed. Modeled in SLOPE/W the Multi-Stage Duncan, Wright and Wong method was utilized for the rapid drawdown event. For this case the inboard slopes were analyzed assuming a rapid drawdown of water level of one of CCR Ponds from a water level Elevation of 1213 ft to the bottom of the pond at 1190 ft. See Figure 10.

SLOPE STABILITY ANALYSIS RESULTS

A summary of the resulting factors of safety, along with the corresponding required minimum values for each of the analyses are presented in Table -2. For each condition there is a correlating Figure produced from SLOPE/W displaying the grid of modeled potential failure arc centers, and the area of potential failure arc tangents, and the final factor of safety.

Table - 2: Factors of Safety Summary

Slope Stability Case	Factor of Safety from Analysis	Required Minimum Factor of Safety (257.73e)	Figure
Long-Term, Maximum Storage Pool Loading	4.33	1.50	Figure-4
Seismic	2.97	1.00	Figure-5
Maximum Surcharge Pool Loading	4.35	1.40	Figure-6
Liquefaction	N/A	1.20	N/A
Rapid Drawdown	1.98	N/A	Figure -10

CONCLUSIONS

Based on the analyses presented within this report, it is concluded that Oklaunion Pond 21, Pond 22, Pond 23, and Waste Water & Sludge Pond impoundment dikes satisfy all minimum slope stability factors of safety values required by the CCR rules.

Figure 1 – Oklaunion PSO Power Station Location Map

Figure 2 – Oklaunion Power Station CCR Pond Location Map

Figure 3 – SLOPE/W Embankment Model.

Figure 4 – Cross section embankment model showing simulated critical failure surface with static load and long-term storage pool loading demonstrating a factor of safety of 4.335.

Figure 5 – Cross section embankment model showing simulated critical failure surface with 0.070g seismic load demonstrating a factor of safety of 2.968.

Figure 6 – Cross section embankment model showing simulated critical failure surface with static load and maximum surcharge pool loading demonstrating a factor of safety of 4.353.

Figure 7 – USGS: National Hazard Maps – 2008

Peak Horizontal Acceleration with 2% Probability of Exceedance in 50 Years

GMT 2016 Sep 19 20:49:23 Distance (R), magnitude (M), epsilon (E0,E) deaggregation for a site on rock with average vs= 760. m/s top 30 m. USGS CGHT PSHA2008 UPDATE Bins with it 0.05% contrib. omitted Figure 8 — Interactive Deaggregations from USGS Geological Hazards Science Center

Figure 9 – From Idriss, I.M. (1990), "Response of Soft Soil Sites During Earthquakes,"

Proc. Memorial Symposium to Honor Professor H.B. Seed, Berkeley, California.

Figure 10 – Cross section embankment model showing simulated critical failure surface in a rapid draw down simulation . Factor of Safety of 1.981.

APPENDIX A

Geotechnical Data Report

Oklaunion Ponds Area Dikes
AEP Oklaunion Power Station
Vernon, Texas

September 8, 2016 Terracon Project No. N4165227

Prepared for:

American Electric Power Columbus, Ohio

Prepared by:

Terracon Consultants, Inc. Columbus, Ohio

Offices Nationwide Employee-Owned Established in 1965 terracon.com

September 8, 2016

American Electric Power 1 Riverside Plaza Columbus, Ohio 43215

Attn: Ms. Leilah Saadi

Geotechnical Engineering

P: [614] 716 2254 E: <u>mlsaadi@aep.com</u>

Re: Geotechnical Data Report

Oklaunion Ponds Area Dikes AEP Oklaunion Power Station

Vernon, Texas

Terracon Project No. N4165227

Dear Ms. Saadi:

Terracon Consultants, Inc. (Terracon) has completed the geotechnical engineering services for the above referenced project. These services were performed in general accordance with our proposal PN4165227 dated May 18, 2016 and our supplemental proposal PN4165283 dated June 14, 2016, under Blanket Contract No. 787002X103 dated October 21, 2013 and American Electric Power (AEP) Letter of Authorization (LoA) for Release 0480 dated May 24, 2016, and Amendment 01 to the LoA dated June 24, 2016.

This report presents the results of our field and laboratory testing programs and includes logs of test borings, piezometer installation records and laboratory testing data sheets. Performing geotechnical engineering analyses and developing geotechnical engineering recommendations associated with the field and laboratory testing programs was not requested by AEP as part of our scope of services.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely,

Terracon Consultants, Inc.

for

Mark Evener Staff Geologist Kevin M. Ernst, P.E. Senior Associate

Reviewed by: Tim G. Abrams, P.E. (Texas), Senior Geotechnical Engineer

Terracon Consultants, Inc. 800 Morrison Road Columbus, Ohio 43230 P [614] 863-3113 F [614] 863-0475 terracon.com

TABLE OF CONTENTS

1.0	INTO	ODUCTION	Page
2.0		JECT INFORMATION	
2.0	2.1	Site Location	
	2.2	Project Description	
3.0		D EXPLORATION	
3.0	3.1	Geotechnical Test Borings	
	3.2	Piezometer Installation	
	3.3	Summary of Subsurface Conditions	
4.0		DRATORY TESTING	
4.0	4.1	Laboratory Testing Description	
5.0	4.2	Summary of Laboratory Testing Results ERAL COMMENTS	
5.0	GEIN	ERAL COMMENTS	0
APP	ENDIX	A – FIELD EXPLORATION	
		Location Plan	Exhibit A-1
		ng Location Plan	
		ng Logs	
		ometer Installation Records	
APP	ENDIX	B – LABORATORY TESTING	
	Sum	mary or Laboratory Testing Results	Exhibit B-1
	Graii	n Size and Atterberg Limits Test Results	Exhibit B-2 to B-20
	Triax	rial Shear Test Results	Exhibit B-21 to B-31
	Hydr	aulic Conductivity Test Results	Exhibit B-32 to B-42
APP	ENDIX	C - SUPPORTING DOCUMENTS	
	Gene	eral Notes	Exhibit C-1
	Unifi	ed Soil Classification System	Exhibit C-2
	Gene	eral Notes Description of Rock Properties	Exhibit C-3

GEOTECHNICAL DATA REPORT OKLAUNION PONDS AREA DIKES AEP OKLAUNION POWER STATION VERNON, TEXAS

Terracon Project No. N4165227 September 8, 2016

1.0 INTRODUCTION

This report presents the results of geotechnical field and laboratory services performed for American Electric Power (AEP) for slope stability analyses of pond dikes at the AEP Oklaunion Power Station located in Vernon, Texas. Terracon's scope of work for this project included the advancement of six (6) geotechnical test borings, identified as Borings B-1 to B-6 to a depth range of about 20.5 to 40.3 feet below existing site grades.

Additionally, a total of five (5) piezometers were installed at the site. Borings B-5A and B-6A were advanced at locations offset from Borings B-5 and B-6 and piezometers were installed in each of these borings. Piezometers were also installed in borings B-1, B-3, and B-4. A drawing of showing the locations of the borings and piezometers, logs of the borings and piezometer installation records are included in Appendix A. Results of testing of soil samples from the borings are included in Appendix B.

The following sections present information about the project and provides a summary of the field exploration and laboratory testing results.

2.0 PROJECT INFORMATION

2.1 Site Location

The Oklaunion Power Station is located at 12567 FM Rd 3430, Vernon, Texas 76384, approximately three miles south-southeast of the intersection of the intersection of Farm to Market Road 433 and Farm to Market Road 3430 in Wilbarger Count Texas. The approximate coordinates of the site are Latitude 34.08425, Longitude -99.17869444.

The plant is operated by American Power Service Corporation and is a coal fired facility which features 17 waste evaporation ponds with a total area of 335.9 acres: six (6) of the wastewater ponds contain some byproducts of the coal combustion process while the 11 other ponds contain cooling tower blowdown. The six ponds containing Coal Combustion Residue (CCR) are primarily located in the south central portion of the plant site.

Oklaunion Ponds Area Dikes AEP Oklaunion Power Station, Vernon, Texas September 8, 2016 Terracon Project No. N4165227

2.2 Project Description

We understand that AEP is planning to perform slope stability analyses related to compliance of pond dikes with CCR Rules. Slope stability analyses will be performed on the dikes around Pond 21, Pond 22, Pond 23 and the Wastewater and Sludge Pond. Exhibit A-1, Site Location Plan shows the approximate location of these ponds. Terracon was requested to perform geotechnical test borings, install piezometers for groundwater observations, and perform geotechnical laboratory testing on soil samples recovered from the soil borings. Performing slope stability analyses and developing geotechnical engineering recommendations associated with the field and laboratory testing programs were not requested by AEP as part of Terracon's scope of services.

3.0 FIELD EXPLORATION

3.1 Geotechnical Test Borings

To develop subsurface information for AEP's slope stability analyses, Terracon performed a total of six (6) geotechnical test borings identified as Borings B-1 to B-6 to a depth range of about 20.5 to 40.3 feet below existing site grades. The locations of the test borings are shown on Exhibit A-2, Boring Location Plan. The following table provides a summary of the location and completion depth for each boring.

Boring No.	Location	Boring Completion Depth
		(feet)
B-1	Along south side of Pond 23	24.5
B-2	East side dike of Wastewater & Sludge Pond	27.4
B-3	Dike between Pond 23 and Wastewater &	20.5
	Sludge Pond	
B-4	Dike between Pond 22 and Pond 23	20.5
B-5	Dike between Pond 21 and 22	40.3
B-6	Along west side of Pond 21	39.4

The test borings were located in field by the Terracon field geologist using coordinates developed from a site map provided by AEP. A handheld GPS unit was used to locate the borings in the field. Terracon coordinated with site personnel to check the boring locations with underground utilities, and adjusted them as necessary to avoid underground interference. The approximate Latitude and Longitude of the test borings as determined by the field geologist are shown on borings logs. Terracon's scope of services did not include survey of the boring locations. We understand AEP intends to provide Terracon the coordinates of the borings (Latitude and Longitude, or plant coordinates) and ground surface elevation upon completion of a survey scheduled for the fall of

Oklaunion Ponds Area Dikes AEP Oklaunion Power Station, Vernon, Texas September 8, 2016 Terracon Project No. N4165227

2016. Once available, Terracon will issue updated boring logs with the as drilled coordinates included.

A track-mounted drilling rig was be utilized to perform the borings. The borings were drilled with a rotary drill rig using continuous flight hollow-stem augers to advance the boreholes. Samples of the soil and bedrock encountered in the borings were obtained using the split barrel sampling procedure.

In the split-barrel sampling procedure, the number of blows required to advance a standard 2-inch O.D. split-barrel sampler the last 12 inches of the typical total 18-inch penetration by means of a 140-pound auto-hammer with a free fall of 30 inches, is the standard penetration resistance value (SPT-N). This value is used to estimate the in-situ relative density of cohesionless soils and consistency of cohesive soils.

An automatic SPT hammer was used to advance the split-barrel sampler in the borings performed on this site. A significantly greater efficiency is achieved with the automatic hammer compared to the conventional safety hammer operated with a cathead and rope. This higher efficiency has an appreciable effect on the SPT-N value. The effect of the automatic hammer's efficiency has been considered in the interpretation and analysis of the subsurface information for this report.

In addition to split-barrel samples, thin-walled steel (Shelby) tubes were hydraulically pushed into the undisturbed soils in advance of the hollow stem augers to collect soil samples for triaxial shear and permeability laboratory tests. The locations of the Shelby tube samples were determined in coordination with AEP's project geotechnical engineer.

Field logs of the borings were prepared by the field geologist. These logs included visual classifications of the materials encountered during drilling, as well as the driller's interpretation of the subsurface conditions between samples.

The samples were marked for identification, sealed to reduce moisture loss, and taken to our laboratory for further examination, testing, and classification. The borings not completed as piezometers were backfilled with bentonite grout prior to the drill crew leaving the site. Additional information concerning piezometer installation is summarized in Section 3.2 below.

Information provided on the boring logs attached to this report includes soil and bedrock descriptions, consistency evaluations, boring depth, sampling intervals, and observed groundwater conditions. The final boring logs included with this report represent the Terracon project geotechnical engineer's interpretation of the field logs and includes modifications based on laboratory observation and tests of the samples.

Oklaunion Ponds Area Dikes AEP Oklaunion Power Station, Vernon, Texas September 8, 2016 Terracon Project No. N4165227

3.2 Piezometer Installation

A total of five (5) piezometers were installed at the site. Borings B-5A and B-6A were advanced at locations offset from Borings B-5 and B-6 and piezometers were installed in each of these borings. Piezometers were also installed in boreholes of geotechnical test borings B-1, B-3, and B-4. Exhibit A-2 shows the locations of the piezometers.

In general, the piezometers were open standpipe type constructed using 2-inch diameter, flush mount PVC riser casing and slotted PVC well screen installed within an 8-1/4 inch diameter borehole. The slot size of the well screen was 0.010 inches and filter pack material consisted of 12/20 sand. The screened interval of each piezometer was determined by the Terracon field geologist is consultation with the AEP project geotechnical engineer. A 2 foot thick bentonite seal placed above the top of the filter sand and the borehole was grouted to the surface. A flush mounted protective steel manhole casing was installed at the surface within a concrete well pad. Details of piezometer installation records are included in Appendix A as Exhibits A-11 to A-20.

The following table provides a summary of the initial water level reading in each of the piezometer boreholes taken at completion of drilling and the water levels readings taken when the installed piezometers were developed by the field geologist.

Piezometer No.	Initial Reading Date/Time	Initial Water Level Reading (feet) ¹	Development Date/Time	Water Level Reading at Development (feet) ¹
B-1	7/12/16 14:30	16.8	7/14/16 13:15	7.6
B-3	7/13/16 09:00	None (Dry)	7/14/16 12:30	9.1
B-4	7/12/16 14:45	None (Dry)	7/14/16 11:30	3.5
B-5A	7/12/16 09:00	None (Dry)	7/14/16 11:15	None (Dry)
B-6A	7/12/16 10:30	None (Dry)	7/14/16 10:30	6.6

Notes: (1) Depth below existing ground surface

Well development was performed by Terracon field geologist on July 14, 2016. An inline electric water pump and ¾ inch poly-flow line was used to purge the piezometers of at least three well volumes of water. This method is implemented in order to flush all fine sediment from the screens of these piezometers, conditioning the screen and allowing groundwater to flow more readily through it. A minimum of three well volumes were removed from each of the piezometers, with two exceptions. Piezometer B-5A had no water, therefore no development was performed. Piezometer B-6A was pumped dry at 2.5 well volumes, with very slow recharge, so development was terminated at that point. It was also noted that Piezometer B-1 contained a large amount of silt in the pump discharge, so a total of eight well volumes were pumped from the piezometer.

Oklaunion Ponds Area Dikes AEP Oklaunion Power Station, Vernon, Texas September 8, 2016 Terracon Project No. N4165227

3.3 Summary of Subsurface Conditions

In general, the test borings encountered cohesive fill above native cohesive soils underlain by bedrock. In general, the fill consisted of lean clay with varying amounts of sand; and trace amounts gravel. The native soils underlying the fill generally consisted of lean clay with varying amounts of sand; and trace amounts of gravel. The bedrock consisted predominantly of claystone, and to less extent siltstone.

Subsurface conditions encountered at the boring locations are indicated on the individual test boring logs presented as Exhibit A-1 to A-10 in Appendix A. Stratification boundaries on the boring logs represent the approximate location of changes in soil types; in-situ, the transition between materials may be gradual. Details of soils and bedrock conditions for the test borings can be found on the test boring logs in Appendix A of this report. An explanation of terminology found on the boring logs is presents in Appendix C, Exhibit C-1: General Notes. The Unified Soil Classification System (USCS) was used to classify soil samples from the recovered from the borings. Exhibit C-2 provides as summary of the USCS. Terminology used to describe the bedrock encountered the borings is presented in Exhibit C-3: Description of Bedrock Properties.

Groundwater was recorded by the field geologist when encountered in the borings during the time of drilling and sampling prior to grouting the borehole or installing a piezometer. These water level observations are shown on the boring logs reflect the water levels at completion of the short period of drilling and may not reflect long term groundwater levels. Due to the low permeability of the fine-grained cohesive soils encountered in the borings, a relatively long period of time may be necessary for a groundwater level to develop and stabilize in a borehole in these materials.

Long term observations or the piezometers which are sealed from the influence of surface water are often required to define groundwater levels in materials of this type. Additional readings of the piezometers installed at the site should be used to establish groundwater levels. It was not within Terracon's scope of services to provide for groundwater readings of the piezometers installed for this project. Groundwater level fluctuations occur due to fluctuation in the pond water levels, and due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the borings and development of the piezometers were performed.

4.0 LABORATORY TESTING

4.1 Laboratory Testing Description

Laboratory testing consisting of moisture content tests, Atterberg Limits tests, grain size distribution tests, Consolidated Undrained (CU) triaxial shear (compression) tests (with pore pressure measurements) and hydraulic conductivity (permeability) tests performed on selected samples obtained from the test borings. The samples to be tested were selected by AEP's

project geotechnical engineer prior to commencing the testing. The testing was performed under the supervision of Terracon's laboratory supervisor. The following tables summarizes the American Society for Testing and Material (ASTM) test methods used for this project.

Test	Test Method
Moisture Content	ASTM D2216-10 - Standard Test Methods for Laboratory
	Determination of Water (Moisture) Content of Soil and Rock by
	Mass
Atterberg Limits	ASTM D4318-10e1 - Standard Test Methods for Liquid Limit,
	Plastic Limit, and Plasticity Index of Soils
Grain Size Distribution	ASTM D422 - 63(2007) - Standard Test Method for Particle-Size
	Analysis of Soils
CU Triaxial Shear	ASTM D4767-11 - Standard Test Method for Consolidated
	Undrained Triaxial Compression Test for Cohesive Soils
Hydraulic Conductivity	ASTM D5084-16 - Standard Test Methods for Measurement of
	Hydraulic Conductivity of Saturated Porous Materials Using a
	Flexible Wall Permeameter

4.2 Summary of Laboratory Testing Results

The results of the laboratory testing are presented in Appendix B. Exhibit B-1 provides a tabular summary of moisture content, Atterberg Limits, and grain size distribution test results. The laboratory data sheets for the Atterberg Limits and grain size distribution testing are included as Exhibits B-2 to B-20. Results of the triaxial CU compression (with pore pressure measurements) tests are presented in Exhibits B-21 to B-31. Results of hydraulic conductivity (permeability) test results are presented in Exhibits B-32 to B-42.

5.0 GENERAL COMMENTS

The test data presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of construction or weather.

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

Oklaunion Ponds Area Dikes AEP Oklaunion Power Station, Vernon, Texas September 8, 2016 Terracon Project No. N4165227

This data report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made.

APPENDIX A FIELD EXPLORATION

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

Project Manager: KME Drawn by DAB KME Approved by: KME

ect No. N4165227 ÄS SHOWN File Name: reportloc 8/25/16

800 MORRISON ROAD

COLUMBUS, OHIO 43230

SITE LOCATION PLAN

OKLAUNION PONDS AREA DIKES AMERICAN ELECTRIC POWER OKLAUNION POWER STATION 12567 FM ROAD 3430

Exhibit

A-1

GEO SMART LOG-NO WELL N4165227. OKLAUNION POWER STATION NEW.GPJ TERRACON2015. GDT 8/30/16

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

GEO SMART LOG-NO WELL N4165227 OKLAUNION POWER STATION NEW GPJ TERRACON2015.GDT 8/30/16

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

	B	ORIN	IG L	_0	G I	O	. В-6	A _						Page	<u>1 of 1</u>
PR	ROJECT: Oklaunion Ponds Area Dikes				CLII	ENT	Amer	ican E	lectri	ic Po	ower				
SI	ΓΕ: AEP Oklaunion Power Station Vernon, Texas														
90	LOCATION See Exhibit A-2		·	EL	<u>F</u>	(In.)	–		각 (tsf)	STI	RENGTH	TEST	(%	. 8	ATTERBE LIMITS
GRAPHIC LOG	Latitude: 34.07864° Longitude: -99.17884°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST	ULTS	LABORATORY TORVANE/HP (tsf)	YPE	COMPRESSIVE STRENGTH (tsf)	(%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pd)	
3RAP			DEPT	MATER	WPL	ECOV	H.	RES	ABOF	TEST TYPE	APRE IREN (tsf)	STRAIN (%)	W C	DRY	LL-PL-
	DEPTH			> ö	8	22			구	۳	CON S-	S,			
-/_	0.4 GRAVEL (3") Augered without sampling to 8.5'	/	· _												
			_												
			_												
			-	1											
			5 –	1											
			-	1											
			_	-											
	0.5		_	1											
	8.5 Pressed Shelby Tube @ 8.5' - 10.5'														
	- Down pressure = 350 psi		10-			20									
	10.5 Augered without sampling to 20.0'		10												
	, tagered without sampling to 20.0		_	1											
			-	1											
			-	-											
			_												
			15-	1											
			_												
			_	1											
			-	1											
			-	1											
	20.0 Boring Terminated at 20 Feet		20-												
	Borning reminiated at 201 eet														
	Stratification lines are approximate. In-situ, the transition may be	gradual.						Hamme	er Type:	Autom	natic				
	cement Method: 5" Hollow Stem Auger							Notes:							
→.∠ :	. Note Other Page	See Append	lix B for d	escrip	otion of	laborat	ory	Boring E Boring o	3-6A offs complete	et appı d as pi	roximately ezometer	/ 4' north	ı of Borir	ng B-6	
band	Ionment Method:	procedures See Append	lix C for e				ols and								
	ing completed as a piezometer.	abbreviation													
	WATER LEVEL OBSERVATIONS	7						Boring Sta	arted: 7/	12/201	 6	Borir	ng Comr	oleted: 7/	/12/2016
	No water encountered while drilling		2	7			חכ	Drill Rig: (er: D. Bo		
			800	Morri	son Ro			Project No			-	Exhib		A-10	
			G	ahann	a, UH			i-ioject ivo	J 194 10	J ZZ [L ZXIII	JIL. F	7-10	

PIEZOMETER INSTALLATION RECORD OKLAUNION PONDS AREA DIKES Job Name__ Location N 34.07618, W 99.17544 N4165227 Installation Date 7-12-16 Job Number___ Datum Elevation_____ Surface Elevation _____ Datum for Water Level Measurement 0.3' BELOW GROUND SURFACE Screen Diameter & Material 2" PVC SCHEDULE 40 0.010" Slot Size Riser Diameter & Material 2" PVC SCHEDULE 40 Borehole Diameter 8 1/4" O.D. Terracon Representative MARK EVENER Granular Backfill Material___12/20 SAND Drilling Contractor TERRACON Drilling Method 4 1/4" HSA Flush Mounted Protective Casing Well Cap Concrete Pad-Ground Surface Solid Riser -Flush Joint -Length of Solid riser: 13.6' Total Depth of Monitoring Depth to Top of Well: 23.6' Bentonite Seal ______10.0' from TOC Depth to Top of Primary Filter Pack _____ 12.0' Length of Screen and Bottom Cap. Screen -10.0' Total Depth Drilled Cap. 24.5' fbqs (Not to Scale) Portland/Bentonite Grout Bentonite Pellet Plug NOTE: LOCATION/ELEVATION DATA FROM Granular Backfill **EXHIBIT A-11**

Terracon
Consulting Engineers and Scientists

800 MORRISON ROAD COLUMBUS, OHIO 43230

PIEZOMETER INSTALLATION RECORD

PROJECT NUMBER: N4165227
WELL NUMBER: B-1

DRAWING NUMBER: form-mw-b1

1 CHECKED BY: KME

PIEZOMETER INSTALLATION RECORD OKLAUNION PONDS AREA DIKES Well Number B-3 Job Name__ Location N 34.07786, W 99.17542 N4165227 Installation Date 7-13-16 Job Number___ Datum Elevation_____ Surface Elevation _____ Datum for Water Level Measurement 0.3' BELOW GROUND SURFACE Screen Diameter & Material 2" PVC SCHEDULE 40 0.010" Slot Size Riser Diameter & Material 2" PVC SCHEDULE 40 Borehole Diameter 8 1/4" O.D. Terracon Representative MARK EVENER Granular Backfill Material___12/20 SAND Drilling Contractor TERRACON Drilling Method 4 1/4" HSA Flush Mounted Protective Casing Well Cap Concrete Pad-Ground Surface Solid Riser -Flush Joint -Length of Solid riser: 9.8' Total Depth of Monitoring Depth to Top of We//:_19.8' Bentonite Seal _____ 6.0' from TOC Depth to Top of 8.0' Primary Filter Pack _____ Length of Screen and Bottom Cap. Screen -10.0' Total Depth Drilled Cap. 20.5' ___ fbgs (Not to Scale) Portland/Bentonite Grout Bentonite Pellet Plug NOTE: LOCATION/ELEVATION DATA FROM Granular Backfill **EXHIBIT A-12**

800 MORRISON ROAD COLUMBUS, OHIO 43230

PIEZOMETER INSTALLATION RECORD

PROJECT NUMBER: N4165227 WELL NUMBER: B-3

DRAWING NUMBER: form-mw-b3

CHECKED BY: KME

PIEZOMETER INSTALLATION RECORD OKLAUNION PONDS AREA DIKES Well Number B-4 Job Name__ Location N 34.07856, W 99.17702 N4165227 Installation Date 7-12-16 Job Number___ Datum Elevation_____ Surface Elevation _____ Datum for Water Level Measurement 0.4' BELOW GROUND SURFACE Screen Diameter & Material 2" PVC SCHEDULE 40 0.010" Slot Size Riser Diameter & Material 2" PVC SCHEDULE 40 Borehole Diameter 8 1/4" O.D. Terracon Representative MARK EVENER Granular Backfill Material___12/20 SAND Drilling Contractor TERRACON Drilling Method 4 1/4" HSA Flush Mounted Protective Casing Well Cap Concrete Pad-Ground Surface Solid Riser -Flush Joint -Length of Solid riser: 9.9' Total Depth of Monitoring Depth to Top of We//:_19.9' Bentonite Seal _____ 6.0' from TOC Depth to Top of 8.0' Primary Filter Pack _____ Length of Screen and Bottom Cap. Screen -10.0' Total Depth Drilled Cap. 20.5' ___ fbgs (Not to Scale) Portland/Bentonite Grout Bentonite Pellet Plug NOTE: LOCATION/ELEVATION DATA FROM Granular Backfill **EXHIBIT A-13**

800 MORRISON ROAD COLUMBUS, OHIO 43230

PIEZOMETER INSTALLATION RECORD

PROJECT NUMBER: N4165227 WELL NUMBER: B-4

DRAWING NUMBER: form-mw-b4

CHECKED BY: KME

PIEZOMETER INSTALLATION RECORD OKLAUNION PONDS AREA DIKES Well Number B-5A Job Name__ Location N 34.07862, W 99.17799 N4165227 Installation Date 7-12-16 Job Number___ Datum Elevation_____ Surface Elevation _____ Datum for Water Level Measurement 0.4' BELOW GROUND SURFACE Screen Diameter & Material 2" PVC SCHEDULE 40 0.010" Slot Size Riser Diameter & Material 2" PVC SCHEDULE 40 Borehole Diameter 8 1/4" O.D. Terracon Representative MARK EVENER Granular Backfill Material___12/20 SAND Drilling Contractor TERRACON Drilling Method 4 1/4" HSA Flush Mounted Protective Casing Well Cap Concrete Pad-Ground Surface Solid Riser -Flush Joint -Length of Solid riser: 9.1' Total Depth of Monitoring Depth to Top of We//:_19.1' Bentonite Seal _____ 5.0' from TOC Depth to Top of Primary Filter Pack ______7.0' Length of Screen and Bottom Cap. Screen -10.0' Total Depth Drilled Cap. 20.0' ___ fbgs (Not to Scale) Portland/Bentonite Grout Bentonite Pellet Plug NOTE: LOCATION/ELEVATION DATA FROM Granular Backfill **EXHIBIT A-14**

Terracon
Consulting Engineers and Scientists

 800 MORRISON ROAD
 COLUMBUS, OHIO 43230

 PH. (614) 863-3113
 FAX. (614) 863-0475

PIEZOMETER INSTALLATION RECORD

PROJECT NUMBER: N4165227
WELL NUMBER: B-5A

DRAWING NUMBER: form-mw-b5a CHECKED BY: KME

PIEZOMETER INSTALLATION RECORD OKLAUNION PONDS AREA DIKES Well Number B-6A Job Name__ Location N 34.07864, W 99.17884 N4165227 Installation Date 7-12-16 Job Number___ Datum Elevation_____ Surface Elevation _____ Datum for Water Level Measurement 0.3' BELOW GROUND SURFACE Screen Diameter & Material 2" PVC SCHEDULE 40 0.010" Slot Size Riser Diameter & Material 2" PVC SCHEDULE 40 Borehole Diameter 8 1/4" O.D. Terracon Representative MARK EVENER Granular Backfill Material___12/20 SAND Drilling Contractor TERRACON Drilling Method 4 1/4" HSA Flush Mounted Protective Casing Well Cap Concrete Pad-Ground Surface Solid Riser -Flush Joint -Length of Solid riser: 9.2' Total Depth of Monitoring Depth to Top of We//:_19.2' Bentonite Seal _____ 5.0' from TOC Depth to Top of Primary Filter Pack ______7.0' Length of Screen and Bottom Cap. Screen -10.0' Total Depth Drilled Cap. 20.0' ___ fbgs (Not to Scale) Portland/Bentonite Grout Bentonite Pellet Plug NOTE: LOCATION/ELEVATION DATA FROM Granular Backfill **EXHIBIT A-15**

Terracon
Consulting Engineers and Scientists

 800 MORRISON ROAD
 COLUMBUS, OHIO 43230

 PH. (614) 863-3113
 FAX. (614) 863-0475

PIEZOMETER INSTALLATION RECORD

PROJECT NUMBER: N4165227
WELL NUMBER: B-6A

DRAWING NUMBER: form-mw-b6a CHECKED BY: KME

STATE OF TEXAS WELL REPORT for Tracking #429510

Owner: American Electric Power-Oklaunion

Station

Address: 12567 FM Rd. 3430

Vernon, TX 76384

Well Location: 12567 FM Rd. 3430

Vernon, TX 76384

Wilbarger

Owner Well #: B-1

Grid #: 13-63-5

Latitude: 34° 04' 34.25" N

Longitude: 099° 10' 31.58" W

Elevation: No Data

Type of Work: Geotechnical

Well County:

Piezometer Installation

Proposed Use: Geotechnical Piezometer

Installation

Drilling Start Date: 7/12/2016 Drilling End Date: 7/12/2016

 Diameter (in.)
 Top Depth (ft.)
 Bottom Depth (ft.)

 8
 0
 24.5

Drilling Method: Hollow Stem Auger

Borehole Completion: Geotechnical Piezometer Installation

Annular Seal Data:

Borehole:

Top Depth (ft.)	Bottom Depth (ft.)	Description (number of sacks & material)
-0.7	2	Concrete 1 Bags/Sacks
2	10	Cement 2 Bags/Sacks
10	12	Bentonite 1 5 gallon bucket bentonite pellets
12	24.5	12/20 silica sand 8 Bags/Sacks

Seal Method: **Tremie** Distance to Property Line (ft.): **No Data**

Sealed By: **Driller** Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion: Alternative Procedure Used Surface Completion by Driller

Water Level: 16.8 ft. below land surface on 2016-07-12 Measurement Method: Weighted Line

Packers: No Data

Type of Pump: No Data

Well Tests: No Test Data Specified

Water Quality:

Strata Depth (ft.)	Water Type
No Data	No Data

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which

contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the

driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in

the report(s) being returned for completion and resubmittal.

Company Information: Texplor of Dallas, Inc.

PO Box 793928 Dallas, TX 75379

Driller Name: Brent Thomason License Number: 2967

Comments: Geotechnical soil boring with piezometer installation for water readings.

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	0.3	Gravel, fill
0.3	1.5	Sand, sandy, brown, fill
1.5	3	Clay, sandy, reddish brown, trace of gravel, fill
3	14	Clay, sand, reddish brown, trace of gravel, fill
14	17	Clay, sand, reddish brown, trace of gravel
17	24.5	Claystone, weathered, reddish brown

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	-0.5	13.6
2	Screen	New Plastic (PVC)	40 0.010	13.6	23.6

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

STATE OF TEXAS WELL REPORT for Tracking #429513

Owner: American Electric Power-Oklaunion

Station

Address: **12567 FM Rd. 3430**

Vernon, TX 76384

Well Location: 12567 FM Rd. 3430

Vernon, TX 76384

Wilbarger

Owner Well #: B-3

Grid #: **13-63-5**

Latitude: 34° 04' 40.3" N

Longitude: 099° 10' 31.51" W

Elevation: No Data

Type of Work: Geotechnical

Well County:

Borehole:

Piezometer Installation

Proposed Use: Geotechnical Piezometer

Installation

Drilling Start Date: 7/13/2016 Drilling End Date: 7/13/2016

 Diameter (in.)
 Top Depth (ft.)
 Bottom Depth (ft.)

 8
 0
 20.5

Drilling Method: Hollow Stem Auger

Borehole Completion: Geotechnical Piezometer Installation

Annular Seal Data:

Top Depth (ft.)	Bottom Depth (ft.)	Description (number of sacks & material)
-0.5	2	Concrete 1 Bags/Sacks
2	6	Cement 2 Bags/Sacks
6	8	Bentonite 1 5 gallon bucket bentonite pellets
8	20.5	12/20 silica sand 8 Bags/Sacks

Seal Method: **Tremie** Distance to Property Line (ft.): **No Data**

Sealed By: **Driller** Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion: Alternative Procedure Used Surface Completion by Driller

Water Level: 0 ft. below land surface on 2016-07-13 Measurement Method: Weighted Line

Packers: No Data

Type of Pump: No Data

Well Tests: No Test Data Specified

Water Quality:

Strata Depth (ft.)	Water Type
No Data	No Data

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which

contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data: The drill

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information: Texplor of Dallas, Inc.

PO Box 793928 Dallas, TX 75379

Driller Name: Brent Thomason License Number: 2967

Comments: Geotechnical soil boring with piezometer installation for water readings.

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	0.2	Gravel, fill
0.2	1.5	Sand, sandy, brown, fill
1.5	7	Clay, sandy, reddish brown, trace of gravel, fill
7	14.5	Clay, sand, reddish brown, trace of gravel, fill
14.5	17	Clay, sand, reddish brown, trace of gravel
17	20	Claystone, weathered, reddish brown

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	-0.3	9.5
2	Screen	New Plastic (PVC)	40 0.010	9.5	19.8

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880 STATE OF TEXAS WELL REPORT for Tracking #429875

Owner: American Electric Power-Oklaunion

Station

Address: 12567 FM Rd. 3430

Vernon, TX 76384

Well Location: 12567 FM Rd. 3430

Vernon, TX 76384

Well County: Wilbarger

Owner Well #: **B-4**

Grid #: **13-63-5**

Latitude: 34° 04' 42.82" N

Longitude: 099° 10' 37.27" W

Elevation: No Data

Type of Work: Geotechnical

Piezometer Installation

Proposed Use: Geotechnical Piezometer

Installation

Bottom Depth (ft.)

20.5

Drilling Start Date: 7/12/2016 Drilling End Date: 7/12/2016

Diameter (in.) Top Depth (ft.)

Borehole: 8 0

Drilling Method: Hollow Stem Auger

Borehole Completion: Geotechnical Piezometer Installation

Annular Seal Data:

Top Depth (ft.)	Bottom Depth (ft.)	Description (number of sacks & material)
-0.5	2	Concrete 1 Bags/Sacks
2	6	Cement 2 Bags/Sacks
6	8	Bentonite 1 5 gallon bucket bentonite pellets
8	20.5	12/20 silica sand 8 Bags/Sacks

Seal Method: **Tremie** Distance to Property Line (ft.): **No Data**

Sealed By: **Driller** Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion: Alternative Procedure Used Surface Completion by Driller

Water Level: 0 ft. below land surface on 2016-07-12 Measurement Method: Weighted Line

Packers: No Data

Type of Pump: No Data

Well Tests: No Test Data Specified

Water Quality:

Strata Depth (ft.)	Water Type
No Data	No Data

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which

contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the

driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in

the report(s) being returned for completion and resubmittal.

Company Information: Texplor of Dallas, Inc.

PO Box 793928 Dallas, TX 75379

Driller Name: Brent Thomason License Number: 2967

Comments: Geotechnical soil boring with piezometer installation for water readings.

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Casing:
BLANK PIPE & WELL SCREEN DATA

0.8 1.5 Cla fill		Description						
0	0.8	Gravel, fill						
0.8	1.5	Clay, sandy reddish brown, fill						
1.5	15.5	Clay, sandy, reddish brown, trace of gravel, fill						
15.5	20.5	Claystone, reddish brown to gray						

DIa (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	-0.3	9.9
2	Screen	New Plastic (PVC)	40 0.010	9.9	19.9

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880 STATE OF TEXAS WELL REPORT for Tracking #429877

Owner: American Electric Power-Oklaunion

Station

Address: 12567 FM Rd. 3430

Vernon, TX 76384

Well Location: 12567 FM Rd. 3430

Vernon, TX 76384

Wilbarger

Owner Well #: B-5A

Grid #: 13-63-5

Latitude: 34° 04' 43.03" N

Longitude: 099° 10' 40.76" W

Elevation: No Data

Type of Work: Geotechnical

Well County:

Piezometer Installation

Proposed Use: Geotechnical Piezometer

Installation

Bottom Depth (ft.)

20

Drilling Start Date: 7/12/2016 Drilling End Date: 7/12/2016

Diameter (in.)

Borehole: 8

Drilling Method: Hollow Stem Auger

Borehole Completion: Geotechnical Piezometer Installation

Annular Seal Data:

Top Depth (ft.)	Bottom Depth (ft.)	Description (number of sacks & material)
-0.5	2	Concrete 1 Bags/Sacks
2	5	Cement 2 Bags/Sacks
5	7	Bentonite 1 5 gallon bucket bentonite pellets
7	20	12/20 silica sand 8 Bags/Sacks

Top Depth (ft.)

0

Seal Method: **Tremie** Distance to Property Line (ft.): **No Data**

Sealed By: **Driller** Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion: Alternative Procedure Used Surface Completion by Driller

Water Level: 0 ft. below land surface on 2016-07-12 Measurement Method: Weighted Line

Packers: No Data

Type of Pump: No Data

Well Tests: No Test Data Specified

Water Quality:

Strata Depth (ft.)	Water Type
No Data	No Data

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which

contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the

driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in

the report(s) being returned for completion and resubmittal.

Company Information: Texplor of Dallas, Inc.

PO Box 793928 Dallas, TX 75379

Driller Name: Brent Thomason License Number: 2967

Comments: Geotechnical soil boring with piezometer installation for water readings.

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Casing: BLANK PIPE & WELL SCREEN DATA

Top (ft.)	Bottom (ft.)	Description
0	0.3	Gravel, fill
0.3	14.5	Clay, sandy reddish brown, fill
14.5	20	Claystone, reddish brown

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	-0.4	9.1
2	Screen	New Plastic (PVC)	40 0.010	9.1	19.1

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

STATE OF TEXAS WELL REPORT for Tracking #429882

Owner: American Electric Power-Oklaunion

Station

Address: 12567 FM Rd. 3430

Vernon, TX 76384

Well Location: 12567 FM Rd. 3430

Vernon, TX 76384

.

Wilbarger

Grid #: 13-63-5

Owner Well #:

Latitude: 34° 04' 43.1" N

B-6A

Longitude: 099° 10' 43.82" W

Elevation: No Data

Type of Work: Geotechnical

Well County:

Piezometer Installation

Proposed Use: Geotechnical Piezometer

Installation

Drilling Start Date: 7/12/2016 Drilling End Date: 7/12/2016

 Diameter (in.)
 Top Depth (ft.)
 Bottom Depth (ft.)

 Borehole:
 8
 0
 20

Drilling Method: Hollow Stem Auger

Borehole Completion: Geotechnical Piezometer Installation

Annular Seal Data:

Top De	epth (ft.)	Bottom Depth (ft.)	Description (number of sacks & material)
-0	.5	2	Concrete 1 Bags/Sacks
	2	5	Cement 2 Bags/Sacks
;	5	7	Bentonite 1 5 gallon bucket bentonite pellets
-	7	20	12/20 silica sand 8 Bags/Sacks

Seal Method: **Tremie** Distance to Property Line (ft.): **No Data**

Sealed By: **Driller** Distance to Septic Field or other

concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: No Data

Surface Completion: Alternative Procedure Used Surface Completion by Driller

Water Level: 0 ft. below land surface on 2016-07-12 Measurement Method: Weighted Line

Packers: No Data

Type of Pump: No Data

Well Tests: No Test Data Specified

Water Quality:

Strata Depth (ft.)	Water Type
No Data	No Data

Chemical Analysis Made: No

Did the driller knowingly penetrate any strata which

contained injurious constituents?: No

The driller did certify that while drilling, deepening or otherwise altering the above described well, injurious water or constituents was encountered and the landowner or person having the well drilled was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution.

Certification Data:

The driller certified that the driller drilled this well (or the well was drilled under the driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the report(s) being returned for completion and resubmittal.

Company Information: Texplor of Dallas, Inc.

PO Box 793928 Dallas, TX 75379

Driller Name: Brent Thomason License Number: 2967

Comments: Geotechnical soil boring with piezometer installation for water readings.

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Casing: BLANK PIPE & WELL SCREEN DATA

Top (ft.)	Bottom (ft.)	Description
0	0.4	Gravel, fill
0.4	8.5	Clay, sandy, reddish brown, fill,
8.5	14	Clay, sandy, reddish brown
14	20	Claystone, reddish brown to gray

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
2	Riser	New Plastic (PVC)	40	-0.4	9.2
2	Screen	New Plastic (PVC)	40 0.010	9.2	19.2

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

APPENDIX B LABORATORY TESTING

Summary of Laboratory Results

	1	T				1	I		1		 	Sheet	1 of
BORING ID	Depth	USCS Classification and Soil Description	Compressive Strength (tsf)	Liquid Limit	Plastic Limit	Plasticity Index	% <#200 Sieve	% Gravel	% Sand	% Silt	% Clay	Water Content (%)	Dr Den (po
B-1	0 - 1.5												
B-1	1.5 - 3	SILTY, CLAYEY SAND(SC-SM)		26	20	6	35.1	8.5	56.3	26.6	8.5	15.0	
B-1	3 - 4.5											16.0	
B-1	5 - 7	LEAN CLAY(CL)		34	16	18	88.4	0.3	11.3	43.3	45.1	16.4	
B-1	7 - 8.5											17.0	
B-1	8.5 - 10	LEAN CLAY with SAND(CL)		32	12	20	83.6	0.5	16.0	41.0	42.6	12.0	
B-1	10 - 11.5											15.0	
B-1	12 - 14	LEAN CLAY(CL)		31	14	17	89.8	0.1	10.1	45.4	44.4	14.6	
B-1	14 - 15.5	LEAN CLAY with SAND(CL)		34	14	20	81.0	0.0	19.0	37.6	43.5	17.0	
B-1	15.5 - 17											17.0	
B-1	17 - 18.5	LEAN CLAY with SAND(CL)		32	11	21	75.1	0.9	24.0	46.9	28.2	19.0	
B-1	18.5 - 20											16.0	
B-1	20 - 21.5											14.0	
B-1	21.5 - 23											15.0	
B-1	23 - 24.5											16.0	
B-2	0 - 1.5												
B-2	1.5 - 3	SILTY SAND(SM)		NP	NP	NP	17.5	6.4	76.1	14.7	2.8	11.0	
B-2	3 - 4.5	0.2.1.0, u.b.(c.m)						0			2.0	17.0	
B-2	5 - 7	LEAN CLAY(CL)		33	17	16	85.5	1.0	13.5	42.6	42.9	15.6	
B-2	7 - 8.5	LEJ W OE W (OE)		- 00		10	00.0	1.0	10.0	12.0	12.0	13.0	
B-2	8.5 - 10											15.0	
B-2	10 - 11.5	LEAN CLAY(CL)		33	13	20	86.5	0.0	13.5	52.8	33.6	15.0	
B-2	12 - 14	LEAN CLAY with SAND(CL)		28	14	14	79.1	0.6	20.3	37.1	42.0	13.7	
B-2	14 - 15.5	LEAN OLAT WILL OAND(OL)		20		1-4	70.1	0.0	20.0	07.1	72.0	14.0	
B-2	15.5 - 17											12.0	
B-2	17 - 18.5	LEAN CLAY with SAND(CL)		33	9	24	80.6	0.7	18.7			15.0	
B-2	18.5 - 20	LEAN OLAT WILL OAND(OL)		33		24	00.0	0.7	10.7			18.0	
B-2	20 - 21.5	LEAN CLAY with SAND(CL)		37	9	28	76.4	0.0	23.6	41.9	34.5	16.0	
B-2	21.5 - 23	LEAN GEAT WILL SAND(GE)		37	9	20	70.4	0.0	25.0	41.3	34.3	14.0	
B-2	23 - 24.5	LEAN CLAY with SAND(CL)		33	11	22	76.4	0.2	23.3	34.7	41.7	16.0	
B-2	24.5 - 26	LEAN GEAT WILL SAND(GE)		33	- ''	22	70.4	0.2	20.0	34.7	41.7	16.0	
B-2 B-2	26 - 27.42											11.0	
B-3	0 - 1.5											11.0	
B-3	1.5 - 3	CLAYEY SAND(SC)		28	17	11	39.9	8.8	51.3	22.7	17.2	12.0	
B-3 B-3	3 - 4.5	OLATET GAIND(GC)		20	17	11	39.8	0.0	31.3	22.1	11.2	16.0	
B-3 B-3	5-7	LEAN CLAY(CL)		32	16	16	85.5	0.1	14.4	44.2	41.3	13.5	
B-3 B-3		LEAN CLAY(CL)		32	10	10	00.5	0.1	14.4	44.2	41.3		
B-3 B-3	7 - 8.5 8.5 - 10	LEAN CLAY(CL)		31	12	19	88.7	0.0	11.3	38.8	49.9	15.0 13.0	
		LLAN OLAT(OL)		31	12	19	00./	0.0	11.3	30.8	49.9		
B-3	10 - 11.5	LEAN CLAY(CL)		24	15	10	00.0	0.0	0.0	47.0	40.7	13.0	
B-3	12 - 14	LEAN CLAY(CL)		34	15	19	90.6	0.6	8.8	47.9		18.5	
B-3	14 - 15.5	LEAN CLAY(CL)		38	13	25	85.4	0.0	14.6	30.1	55.3	15.0	
B-3	15.5 - 17	LEAN CLAY(CL) Ponds Area Dikes		32	11	21	87.0	0.0	13.0	32.5	54.5	15.0	
		Ponds Area Dikes Power Station	Terr	'	CC	חו		JECT N					
	on, Texas		- 800 N	∕lorrisc	n Rd		CLIE	NT: Am	erican	Electr	ic Pov	/er	
			Gah	anna,	OH		EXHI	BIT: B-	1				

Summary of Laboratory Results

		I				1			1		-	Sheet	2 of
BORING ID	Depth	USCS Classification and Soil Description	Compressive Strength (tsf)	Liquid Limit	Plastic Limit	Plasticity Index	% <#200 Sieve	% Gravel	% Sand	% Silt	% Clay	Water Content (%)	Dry Dens (pc
B-3	17 - 18.5											14.0	
B-3	18.5 - 20											9.0	
B-4	0 - 1.5	CLAYEY SAND(SC)		23	11	12	38.5	10.1	51.4	21.6	17.0	6.0	
B-4	1.5 - 3											19.0	
B-4	3 - 4.5	LEAN CLAY with SAND(CL)		32	13	19	70.4	0.0	29.6	31.0	39.4	16.0	
B-4	5 - 7												
B-4	7 - 8.5	LEAN CLAY with SAND(CL)		34	12	22	81.3	0.4	18.3	35.6	45.7	16.0	
B-4	8.5 - 10.5	LEAN CLAY with SAND(CL)		32	10	22	77.3	0.1	22.5	38.0	39.4	17.0	
B-4	10.5 - 12	LEAN CLAY with SAND(CL)		37	11	26	78.9	1.2	19.8	35.3	43.6	17.0	
B-4	12 - 14	\											
B-4	14 - 15.5											13.0	
B-4	15.5 - 17											13.0	
B-4	17 - 18.5											10.0	
B-4	18.5 - 19.42											- 5.5	
B-5	0 - 1.5											6.0	
B-5	1.5 - 3	LEAN CLAY with SAND(CL)		31	14	17	75.6	0.4	24.0	42.6	32.9	14.0	
B-5	3 - 4.5	LEAN CLAT WILL SAND(CL)		31	14	17	75.0	0.4	24.0	42.0	32.9	11.0	
B-5	5-7	LEAN CLAY(CL)		33	16	17	88.6	2.2	9.3	45.8	42.7	17.4	
		LEAN CLAY(CL)											
B-5	7 - 8.5	LEAN CLAY(CL)		33	12	21	85.2	0.1	14.6	45.5	39.8	13.0	
B-5	8.5 - 10	LEAN CLAY with SAND(CL)		36	10	26	71.8	0.6	27.6	36.9	34.9	16.0	
B-5	10 - 11.5											12.0	
B-5	12 - 14	LEAN CLAY(CL)		35	15	20	88.8	1.1	10.1	44.5	44.3	17.6	
B-5	14 - 15.5											12.0	
B-5	15.5 - 17											15.0	
B-5	17 - 18.42											11.0	
B-5	18.5 - 19.92											8.0	
B-5	20 - 21.49											10.0	
B-5	21.5 - 22.42											10.0	
B-5	23 - 23.92											9.0	
B-5	24.5 - 25.33											9.0	
B-5	26 - 26.92											9.0	
B-5	27.5 - 28.33											9.0	
B-5	29 - 29.92											7.0	
B-5	30.5 - 31.83											9.0	
B-5	32 - 32.92											9.0	
B-5	33.5 - 34.49											11.0	
B-5	35 - 35.75											9.0	
B-5	36.5 - 36.99											9.0	
B-5	38 - 38.92											10.0	
B-5	39.5 - 40.25											9.0	
B-6	0 - 1.5											11.0	
B-6	1.5 - 3	CLAYEY SAND(SC)		32	23	9	32.8	3.9	63.3	26.9	5.9	17.0	
PROJECT:	Oklaunion F	Ponds Area Dikes	75				PRO	JECT N	JMBEF	R: N4	16522	.7	
	Oklaunion F on, Texas	Power Station	Terr	6			CLIE	NT: Am	erican	Electr	ic Pov	ver	
			N 008	/lorrisc	n Rd								

Summary of Laboratory Results

Sheet 3 of 3													
BORING ID	Depth	USCS Classification and Soil Description	Compressive Strength (tsf)	Liquid Limit	Plastic Limit	Plasticity Index	% <#200 Sieve	% Gravel	% Sand	% Silt	% Clay	Water Content (%)	Dry Density (pcf)
B-6	3 - 4.5	LEAN CLAY with SAND(CL)		31	11	20	77.8	0.5	21.7	41.4	36.4	16.0	
B-6	5 - 7	LEAN CLAY(CL)		35	15	20	86.3	1.1	12.6	46.6	39.7	14.9	
B-6	7 - 8.5	LEAN CLAY with SAND(CL)		27	11	16	82.6	0.0	17.4	48.8	33.7	14.0	
B-6	8.5 - 10											18.0	
B-6	10 - 11.5	LEAN CLAY with SAND(CL)		31	9	22	77.1	0.3	22.7	45.2	31.9	15.0	
B-6	12 - 14	LEAN CLAY(CL)		29	14	15	87.4	0.0	12.6	44.7	42.6	14.9	
B-6	14 - 15.5											10.0	
B-6	15.5 - 16.92											9.0	
B-6	17 - 18.5											10.0	
B-6	18.5 - 20											11.0	
B-6	21 - 22.42											9.0	
B-6	22.5 - 23.42											6.0	
B-6	24 - 24.92											9.0	
B-6	25.5 - 26.42											10.0	
B-6	27 - 27.75											10.0	
B-6	28.5 - 29.33											11.0	
B-6	30 - 30.67											11.0	
B-6	31.5 - 32.17											10.0	
B-6	33 - 33.49											11.0	
B-6	34.5 - 35.17											10.0	
B-6	36 - 36.42											9.0	
B-6	37.5 - 37.92											9.0	
B-6	39 - 39.42											8.0	

PROJECT: Oklaunion Ponds Area Dikes

SITE: AEP Oklaunion Power Station Vernon, Texas

PROJECT NUMBER: N4165227

CLIENT: American Electric Power

EXHIBIT: B-1

ATTERBERG LIMITS RESULTS

ASTM D4318

ATTERBERG LIMITS RESULTS

ASTM D4318

ATTERBERG LIMITS RESULTS

ASTM D4318

EFFECTIVE STRESS PARAMETERS	f '= 27.4	deg	c' =	2.3	psi			
	SPECIMEN NO.	1	2	3	4			
50.00		INIT	IAL					
	Moisture Content - %	15.1	17.6	15.4				
40.00	Dry Density - pcf	115.3	110.2	116.8				
<u>Ø</u> 40.00	Diameter - inches	1.89	1.91	1.94				
	Height - inches	3.95	3.95	4.00				
⊗ 30.00 30.00		AT T	EST					
30.00 W 20.00 W 20.00	Final Moisture - %	16.9	19.1	15.2				
ιο ο 20 00	Dry Density - pcf	115.3	110.4	118.8				
<u>e</u> 20.00	Calculated Diameter (in.)	1.87	1.90	1.92				
4	Height - inches	3.89	3.90	3.95				
台 10.00	Effect. Cell Pressure - psi	6.0	12.0	24.0				
	Failure Stress - psi	13.86	19.24	32.35				
0.00	Total Pore Pressure - psi	51.4	56.4	59.3				
0.00 5.0 10.0 15.0 20.0	Strain Rate - inches/min.	0.00040	0.00040	0.00040				
	Failure Strain - %	1.6	2.5	4.0				
AXIAL STRAIN - %	S ₁ ' Failure - psi	18.47	24.82	47.07				
	S ₃ ' Failure - psi	4.61	5.58	14.72				
TEST DESCRIPTION		PROJEC	T INFOR	MATION				

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-1, ST-1, 5.0-7.0 ft
ASSUMED SPECIFIC GRAVITY: 2.70

LL: 34 PL: 16 PI: 18 Percent -200: 88.4

REMARKS: Specimens trimmed to 2.0" diameter.

PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX

PROJECT NO: N4165227

CLIENT: AEP DATE: 8/19/16

TERRACON Exhibit: B-21

EFFECTIVE STRESS PARAMETERS	$R^2 = 0.99$	a (deg) = 24.7	a (psi) =	2.1
PROJECT: Oklaunion- Ponds Area Dikes		TYPE OF TEST & NO: CU v	vith Pore Press	ure
PROJECT NO: N4165227		TERRACO	N	Eukikit D 04
DESCRIPTION: Lean Clay (CL)		IERRACO	IN	Exhibit: B-21

TOTAL STRESS PARAMETERS	f =	20.0	deg	C =	2.6	psi
	SPECIMEN	I NO.	1	2	3	4
50.00			INIT	TAL		
	Moisture Conte	ent - %	15.1	17.6	15.4	
40.00	Dry Density - p	ocf	115.3	110.2	116.8	
40.00	Diameter - inch	nes	1.89	1.91	1.94	
i i	Height - inches	3	3.95	3.95	4.00	
8 30.00 1 1 1 1 1 1 1 1 1 1			AT T	EST		
S 30.00	Final Moisture	- %	16.9	19.1	15.2	
	Dry Density - p	ocf	115.3	110.4	118.8	
<u>e</u> 20.00	Calculated Dia	meter (in.)	1.87	1.90	1.92	
20.00 E N H 10.00	Height - inches	3	3.89	3.90	3.95	
台 10.00	Effect. Cell Pre	essure - psi	6.0	12.0	24.0	
	Failure Stress	- psi	13.86	19.24	32.35	
	Total Pore Pre	ssure - psi	51.4	56.4	59.3	
0.00	Strain Rate - in	ches/min.	0.00040	0.00040	0.00040	
	Failure Strain -	%	1.6	2.5	4.0	
AXIAL STRAIN - % S ₁ Failure - ps		i	19.86	31.24	56.35	
	S ₃ Failure - ps	i	6.00	12.00	24.00	
TEST DESCRIPTION PROJECT INFORMATION			MATION			

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-1, ST-1, 5.0-7.0 ft
ASSUMED SPECIFIC GRAVITY: 2.70

LL: 34 PL: 16 PI: 18 Percent -200: 88.4

REMARKS: Specimens trimmed to 2.0" diameter.

PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX

PROJECT NO: N4165227

CLIENT: AEP DATE: 8/19/16

TERRACON Exhibit: B-21

EFFECTIVE STRESS PARAMETERS	f '= 24.2	deg :	c' =	3.6	psi
	SPECIMEN NO.	1	2	3	4
80.00		INIT	TAL		
70.00	Moisture Content - %	14.8	14.9		
70.00	Dry Density - pcf	116.8	118.8		
জু 60.00	Diameter - inches	1.35	1.38		
	Height - inches	2.81	2.80		
SS 50.00 40.00 40.00		AT T	EST		
40.00	Final Moisture - %	15.9	15.0		
	Dry Density - pcf	116.9	119.2		
Ö 30.00	Calculated Diameter (in.)	1.34	1.36		
20.00 20.00	Height - inches	2.77	2.75		
	Effect. Cell Pressure - psi	8.0	32.0		
10.00	Failure Stress - psi	18.58	48.31		
	Total Pore Pressure - psi	52.6	55.2		
0.00	Strain Rate - inches/min.	0.00030	0.00030		
	Failure Strain - %	2.0	3.3		
AXIAL STRAIN - %	S ₁ ' Failure - psi	24.02	75.10		
	S ₃ ' Failure - psi	5.44	26.79		
TEST DESCRIPTION		PROJEC	T INFOR	MATION	

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-1, ST-2, 12.0-14.0 ft
ASSUMED SPECIFIC GRAVITY: 2.70

LL: 31 PL: 14 PI: 17 Percent -200: 89.8 REMARKS: Specimens trimmed to 1.4" diameter.

PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX PROJECT NO: N4165227

CLIENT: AEP DATE: 8/19/16

TERRACON

EFFECTIVE STRESS PARAMETERS	$R^2 = 1.00$	a (deg) = 22.3	a (psi) =	3.2
PROJECT: Oklaunion- Ponds Area Dikes		TYPE OF TEST & NO: CU v	vith Pore Press	sure
PROJECT NO: N4165227		TERRACO	N	Entitie D 00
DESCRIPTION: Lean Clay (CL)		IERRACO	IN	Exhibit: B-22

TOTAL STRESS PARAMETERS	f =	22.5	deg	C =	2.9	psi
	SPECIMEN	I NO.	1	2	3	4
80.00			INIT	TAL		
70.00	Moisture Conte	ent - %	14.8	14.9		
70.00	Dry Density - p	cf	116.8	118.8		
<u></u>	Diameter - inch	ies	1.35	1.38		
	Height - inches	i	2.81	2.80		
SS 50.00 40.00 40.00			AT T	EST		
40.00	Final Moisture	- %	15.9	15.0		
	Dry Density - p	cf	116.9	119.2		
Ö 30.00	Calculated Dia	meter (in.)	1.34	1.36		
20.00 PA 20.00	Height - inches	;	2.77	2.75		
Ä 20.000	Effect. Cell Pre	essure - psi	8.0	32.0		
10.00	Failure Stress	- psi	18.58	48.31		
0.00	Total Pore Pres	ssure - psi	52.6	55.2		
0.00 5.0 10.0 15.0 20.0	Strain Rate - in	ches/min.	0.00030	0.00030		
	Failure Strain -	%	2.0	3.3		
AXIAL STRAIN - %	S₁ Failure - ps		26.58	80.31		
	S ₃ Failure - psi		8.00	32.00		
TEST DESCRIPTION	PTION PROJECT INFORMATION					

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-1, ST-2, 12.0-14.0 ft
ASSUMED SPECIFIC GRAVITY: 2.70

LL: 31 PL: 14 PI: 17

PL: 14 PI: 17 Percent -200: 89.8

REMARKS: Specimens trimmed to 1.4" diameter.

PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX

PROJECT NO: N4165227

CLIENT: AEP DATE: 8/19/16

TERRACON

EFFECTIVE STRESS PARAMETERS	f '=	22.8	deg	c' =	2.4	psi
	SPECIMEN	I NO.	1	2	3	4
50.00			INIT	TAL		
	Moisture Conte	ent - %	16.9	16.6	14.3	
40.00	Dry Density - p	cf	113.6	117.0	117.3	
₹0.00	Diameter - inch	nes	1.93	1.92	1.95	
I	Height - inches	3	3.97	3.99	4.00	
S 30.00			AT T	EST		
2	Final Moisture	- %	17.6	15.2	15.3	
	Dry Density - p	cf	113.6	119.1	118.6	
<u>e</u> 20.00	Calculated Dia	meter (in.)	1.92	1.91	1.93	
20.00 V V V V V V V V V V V V V V V V V V V	Height - inches	3	3.93	3.97	3.95	
台 10.00	Effect. Cell Pre	essure - psi	6.0	12.0	24.0	
	Failure Stress	- psi	11.64	16.09	24.85	
0.00	Total Pore Pres	ssure - psi	52.2	55.6	60.0	
0.00	Strain Rate - in	ches/min.	0.00040	0.00040	0.00040	
	Failure Strain -	%	1.4	1.4	1.5	
AXIAL STRAIN - % S ₁ ' Failu		i	15.46	22.48	38.88	
	S ₃ ' Failure - ps	si	3.82	6.39	14.03	
TEST DESCRIPTION	PTION PROJECT INFORMATION					

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-2, ST-1, 5.0-7.0 ft ASSUMED SPECIFIC GRAVITY: 2.70

LL: 33 PL: 17 Pl: 16 Percent -200: 85.5

REMARKS: Specimens trimmed to 2.0" diameter.

PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX

PROJECT NO: N4165227

CLIENT: AEP DATE: 8/19/16

TERRACON

EFFECTIVE STRESS PARAMETERS	$R^2 = 1.00$	a (deg) = 21.2	a (psi) =	2.2
PROJECT: Oklaunion- Ponds Area Dikes		TYPE OF TEST & NO: CU v	vith Pore Press	ure
PROJECT NO: N4165227		TERRACO	N	Exhibit: B-23
DESCRIPTION: Lean Clav (CL)		IERRACO	N .	EXHIDIL D-23

TOTAL STRESS PARAMETERS	f = 15.6	deg	C =	2.8	psi
	SPECIMEN NO.	1	2	3	4
50.00		INIT	ĪAL		
	Moisture Content - %	16.9	16.6	14.3	
10.00	Dry Density - pcf	113.6	117.0	117.3	
<u>Ø</u> 40.00	Diameter - inches	1.93	1.92	1.95	
i i	Height - inches	3.97	3.99	4.00	
₩ 30.00 /		AT T	EST		
ST R	Final Moisture - %	17.6	15.2	15.3	
	Dry Density - pcf	113.6	119.1	118.6	
ğ 20.00	Calculated Diameter (in.)	1.92	1.91	1.93	
<u>'</u> \	Height - inches	3.93	3.97	3.95	
台 10.00	Effect. Cell Pressure - psi	6.0	12.0	24.0	
	Failure Stress - psi	11.64	16.09	24.85	
	Total Pore Pressure - psi	52.2	55.6	60.0	
0.00	Strain Rate - inches/min.	0.00040	0.00040	0.00040	
	Failure Strain - %	1.4	1.4	1.5	
AXIAL STRAIN - %	S ₁ Failure - psi	17.64	28.09	48.85	
	S ₃ Failure - psi	6.00	12.00	24.00	
TEST DESCRIPTION					

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-2, ST-1, 5.0-7.0 ft ASSUMED SPECIFIC GRAVITY: 2.70

LL: 33 PL: 17 Pl: 16 Percent -200: 85.5

REMARKS: Specimens trimmed to 2.0" diameter.

PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX

PROJECT NO: N4165227

CLIENT: AEP DATE: 8/19/16

TERRACON

EFFECTIVE STRESS PARAMETERS	f '= 1	17.6 deg	c' =	6.3	psi
	SPECIMEN NO.	1	2	3	4
60.00		INI ⁻	ΓIAL		
	Moisture Content - %	13.7	13.7	13.7	
50.00	Dry Density - pcf	117.6	117.6	117.6	
<u>8</u>	Diameter - inches	1.40	1.40	1.40	
40.00	Height - inches	2.81	2.81	2.81	
30.00 S 30.00		AT 1	EST		
₩ 30.00	Final Moisture - %	İ		14.6	
	Dry Density - pcf	118.4	119.6	120.1	
20.00	Calculated Diameter (in	n.) 1.38	1.41	1.40	
O 20.00	Height - inches	2.74	2.82	2.81	
<u> </u>	Effect. Cell Pressure -	psi 8.0	16.0	32.0	
10.00	Failure Stress - psi	19.87	28.45	38.49	
	Total Pore Pressure - p	osi 53.5	55.5	56.7	
0.00 10.0 15.0 20.0	Strain Rate - inches/mi	n. 0.00030	0.00030	0.00030	
	Failure Strain - %	2.0	0.4	2.0	
AXIAL STRAIN - %	S ₁ ' Failure - psi	24.38	38.96	63.80	
	S ₃ ' Failure - psi	4.51	10.51	25.31	
TEST DESCRIPTION	RIPTION PROJECT INFORMATION				

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay with Sand (CL)
SAMPLE LOCATION: B-2, ST-2, 12.0-14.0 ft
ASSUMED SPECIFIC GRAVITY: 2.70

LL: 28 PL: 14 Pl: 14 Percent -200: 79.1 REMARKS: Multistage Triaxial PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX PROJECT NO: N4165227

CLIENT: AEP DATE: 8/19/16

TERRACON Exhibit: B-24

EFFECTIVE STRESS PARAMETERS	$R^2 = 0.99$	a (deg) = 16.8	a (psi) =	6.0
PROJECT: Oklaunion- Ponds Area Dikes		TYPE OF TEST & NO: CU v	vith Pore Press	sure
PROJECT NO: N4165227		TERRACO	NI	Exhibit: B-24
DESCRIPTION: Lean Clay with Sand (CL)		IERRACO	IN	EXHIDIL D-24

TOTAL STRESS PARAMETERS	f =	16.0	deg	C =	5.6	psi
	SPECIMEN	NO.	1	2	3	4
60.00			INIT	TAL		
	Moisture Conter	nt - %	13.7	13.7	13.7	
50.00	Dry Density - pc	f	117.6	117.6	117.6	
<u>8</u>	Diameter - inche	es	1.40	1.40	1.40	
40.00	Height - inches		2.81	2.81	2.81	
S 30.00 S 30.00			AT T	EST		
₩ 30.00	Final Moisture -	%			14.6	
	Dry Density - pc	f	118.4	119.6	120.1	
20.00	Calculated Diam	neter (in.)	1.38	1.41	1.40	
O 20.00	Height - inches		2.74	2.82	2.81	
台 10.00 H	Effect. Cell Pres	ssure - psi	8.0	16.0	32.0	
10.00	Failure Stress -	psi	19.87	28.45	38.49	
0.00	Total Pore Press	sure - psi	53.5	55.5	56.7	
0.00 5.0 10.0 15.0 20.0	Strain Rate - inc	hes/min.	0.00030	0.00030	0.00030	
	Failure Strain - 9	%	2.0	0.4	2.0	
AXIAL STRAIN - % S ₁ Failure			27.87	44.45	70.49	
	S ₃ Failure - psi		8.00	16.00	32.00	
TEST DESCRIPTION	IPTION PROJECT INFORMATION					

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay with Sand (CL) SAMPLE LOCATION: B-2, ST-2, 12.0-14.0 ft ASSUMED SPECIFIC GRAVITY: 2.70

LL: 28 PL: 14 PI: 14 Percent -200: 79.1

REMARKS: Multistage Triaxial

LOCATION: Vernon, TX

PROJECT NO: N4165227

PROJECT: Oklaunion- Ponds Area Dikes

CLIENT: AEP DATE: 8/19/16

> **TERRACON** Exhibit: B-24

EFFECTIVE STRESS PARAMETERS	f '=	33.5	deg	c' =	1.8	psi
	SPECIMEN	I NO.	1	2	3	4
60.00			INIT	IAL		
	Moisture Conte	ent - %	13.9	13.6	13.0	
50.00	Dry Density - p	cf	116.9	117.6	119.1	
<u>8</u>	Diameter - inch	ies	1.40	1.42	1.44	
40.00	Height - inches	i	2.80	2.81	2.78	
S 30.00			AT T	EST		
₩ 30.00	Final Moisture	- %	16.2	15.8	14.5	
S S	Dry Density - p	cf	116.9	117.6	120.7	
20.00	Calculated Diar	meter (in.)	1.39	1.42	1.42	
20.00 PA 10.00	Height - inches	1	2.78	2.79	2.74	
<u> </u>	Effect. Cell Pre	ssure - psi	6.0	12.0	24.0	
10.00	Failure Stress -	- psi	12.99	20.63	41.43	
	Total Pore Pres	ssure - psi	52.7	57.2	59.6	
0.00	Strain Rate - in	ches/min.	0.00030	0.00030	0.00030	
	Failure Strain -	%	0.9	3.0	2.6	
AXIAL STRAIN - %	S ₁ ' Failure - ps	i	16.29	25.48	55.80	
	S ₃ ' Failure - ps	i	3.30	4.85	14.37	
TEST DESCRIPTION			PROJEC	T INFOR	MATION	

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-3, ST-1, 5.0-7.0 ft
ASSUMED SPECIFIC GRAVITY: 2.70

LL: 32 PL: 16 PI: 16 Percent -200: 85.5

REMARKS: Specimens trimmed to 1.4" diameter.

PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX PROJECT NO: N4165227

ROJECT NO. N4163227

CLIENT: AEP DATE: 8/19/16

TERRACON

EFFECTIVE STRESS PARAMETERS	$R^2 = 1.00$	a (deg) = 28.9	a (psi) =	1.5
PROJECT: Oklaunion- Ponds Area Dikes		TYPE OF TEST & NO: CU v	vith Pore Press	sure
PROJECT NO: N4165227		TERRACO	N	Entritude D. OF
DESCRIPTION: Lean Clay (CL)		IERRACO	IN	Exhibit: B-25

TOTAL STRESS PARAMETERS	f = 26.4	deg	C =	0.8	psi			
	SPECIMEN NO.	1	2	3	4			
60.00		INI	TAL					
	Moisture Content - %	13.9	13.6	13.0				
50.00	Dry Density - pcf	116.9	117.6	119.1				
<u>8</u>	Diameter - inches	1.40	1.42	1.44				
40.00	Height - inches	2.80	2.81	2.78				
SS		AT T	EST					
S 30.00	Final Moisture - %	16.2	15.8	14.5				
So The second se	Dry Density - pcf	116.9	117.6	120.7				
20.00	Calculated Diameter (in.)	1.39	1.42	1.42				
20.00 - HAM	Height - inches	2.78	2.79	2.74				
台 10.00	Effect. Cell Pressure - psi	6.0	12.0	24.0				
10.00	Failure Stress - psi	12.99	20.63	41.43				
0.00	Total Pore Pressure - psi	52.7	57.2	59.6				
0.00 5.0 10.0 15.0 20.0	Strain Rate - inches/min.	0.00030	0.00030	0.00030				
	Failure Strain - %	0.9	3.0	2.6				
AXIAL STRAIN - %	S ₁ Failure - psi	18.99	32.63	65.43				
	S ₃ Failure - psi	6.00	12.00	24.00				
TEST DESCRIPTION		PROJEC	T INFOR	MATION				

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-3, ST-1, 5.0-7.0 ft ASSUMED SPECIFIC GRAVITY: 2.70

LL: 32 PL: 16 PI: 16 Percent -200: 85.5

REMARKS: Specimens trimmed to 1.4" diameter.

PROJECT: Oklaunion- Ponds Area Dikes LOCATION: Vernon, TX

PROJECT NO: N4165227

CLIENT: AEP DATE: 8/19/16

> **TERRACON** Exhibit: B-25

EFFECTIVE STRESS PARAMETERS	f '=	26.2	deg	c' =	1.3	psi
	SPECIMEN	I NO.	1	2	3	4
50.00			INIT	TAL		
	Moisture Conte	ent - %	19.6	18.1	18.7	
10.00	Dry Density - p	cf	105.9	107.7	105.6	
<u>ত</u>	Diameter - inch	nes	1.35	1.35	1.38	
	Height - inches	;	2.81	2.82	2.80	
∞ 30.00			AT T	EST		
SS 30.00	Final Moisture	- %	21.2	19.7	19.9	
	Dry Density - p	cf	106.2	109.2	109.2	
g 20.00	Calculated Dia	meter (in.)	1.34	1.33	1.36	
20.00 VI	Height - inches	;	2.79	2.77	2.72	
台 10.00	Effect. Cell Pre	essure - psi	8.0	16.0	32.0	
	Failure Stress	- psi	11.85	16.99	28.09	
0.00	Total Pore Pres	ssure - psi	52.8	58.5	66.8	
0.00	Strain Rate - in	ches/min.	0.00030	0.00030	0.00030	
	Failure Strain -	%	1.4	5.5	8.5	
AXIAL STRAIN - %	S ₁ ' Failure - ps	i	17.06	24.50	43.29	
	S ₃ ' Failure - ps	i	5.21	7.51	15.20	
TEST DESCRIPTION			PROJEC	T INFOR	MATION	

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-3, ST-2, 12.0-14.0 ft
ASSUMED SPECIFIC GRAVITY: 2.70

LL: 34 PL: 15 PI: 19 Percent -200: 90.6

REMARKS: Specimens trimmed to 1.4" diameter.

PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX PROJECT NO: N4165227

CLIENT: AEP DATE: 8/22/16

TERRACON

Exhibit: B-26

Note: Stage two (2) speciman subjected to Hydraulic Conductivity test prior to Triaxial Shear Testing.

EFFECTIVE STRESS PARAMETERS	$R^2 = 1.00$	a (deg) = 23.9	a (psi) =	1.2			
PROJECT: Oklaunion- Ponds Area Dikes		TYPE OF TEST & NO: CU with Pore Pressure					
PROJECT NO: N4165227		TEDDACO	NI	F.,L;L;t, D 00			
DESCRIPTION: Lean Clay (CL)		TERRACON Exhibit:					

TOTAL STRESS PARAMETERS	f = 14.7	deg	C =	2.4	psi
	SPECIMEN NO.	1	2	3	4
50.00		INIT	TAL		
	Moisture Content - %	19.6	18.1	18.7	
40.00	Dry Density - pcf	105.9	107.7	105.6	
<u>ত</u>	Diameter - inches	1.35	1.35	1.38	
	Height - inches	2.81	2.82	2.80	
S 30.00		AT T	EST		
2	Final Moisture - %	21.2	19.7	19.9	
	Dry Density - pcf	106.2	109.2	109.2	
g 20.00	Calculated Diameter (in.)	1.34	1.33	1.36	
E 10.00	Height - inches	2.79	2.77	2.72	
当 10.00	Effect. Cell Pressure - psi	8.0	16.0	32.0	
	Failure Stress - psi	11.85	16.99	28.09	
	Total Pore Pressure - psi	52.8	58.5	66.8	
0.00	Strain Rate - inches/min.	0.00030	0.00030	0.00030	
	Failure Strain - %	1.4	5.5	8.5	
AXIAL STRAIN - %	S ₁ Failure - psi	19.85	32.99	60.09	
	S ₃ Failure - psi	8.00	16.00	32.00	
TEST DESCRIPTION		PROJEC	T INFOR	MATION	

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-3, ST-2, 12.0-14.0 ft
ASSUMED SPECIFIC GRAVITY: 2.70

LL: 34 PL: 15 PI: 19 Percent -200: 90.6

REMARKS: Specimens trimmed to 1.4" diameter.

PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX PROJECT NO: N4165227

-ROJECT NO. N41632

CLIENT: AEP DATE: 8/22/16

TERRACON

EFFECTIVE STRESS PARAMETERS	f '=	26.5	deg	c' =	2.0	psi
_	SPECIMEN	NO.	1	2	3	4
50.00			INIT	IAL		
	Moisture Conte	nt - %	18.7	16.5	16.1	
40.00	Dry Density - po	cf	103.9	111.4	116.5	
<u>₩</u> 40.00	Diameter - inch	es	1.36	1.38	1.36	
	Height - inches		2.81	2.83	2.80	
S 30.00			AT T	EST		
2 2	Final Moisture -	· %	22.6	18.6	15.0	
	Dry Density - po	cf	103.9	111.4	119.0	
<u>e</u> 20.00	Calculated Diar	meter (in.)	1.34	1.36	1.35	
20.00 V	Height - inches		2.75	2.78	2.76	
⊞ 10.00 ₩	Effect. Cell Pre	ssure - psi	6.0	16.0	32.0	
	Failure Stress -	psi	11.47	22.22	40.63	
0.00	Total Pore Pres	sure - psi	53.0	56.1	60.8	
0.00	Strain Rate - in	ches/min.	0.00030	0.00030	0.00030	
	Failure Strain -	%	2.8	4.9	4.4	
AXIAL STRAIN - %	S ₁ ' Failure - psi	i	14.46	32.16	61.79	
	S ₃ ' Failure - psi		2.99	9.94	21.16	
TEST DESCRIPTION			PROJEC	T INFOR	MATION	

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-4, ST-2, 8.5-10.5 ft ASSUMED SPECIFIC GRAVITY: 2.70

LL: 37 PL: 17 Pl: 20 Percent -200: 93.7

REMARKS: Specimens trimmed to 1.4" diameter.

PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX PROJECT NO: N4165227

ROJECT NO: N4165227

CLIENT: AEP DATE: 8/22/16

TERRACON Exhibit: B-27

EFFECTIVE STRESS PARAMETERS	$R^2 = 1.00$	a (deg) = 24.0	a (psi) =	1.8
PROJECT: Oklaunion- Ponds Area Dikes		TYPE OF TEST & NO: CU v	vith Pore Press	ure
PROJECT NO: N4165227		TERRACO	N	F. J. J. Jr. D. 07
DESCRIPTION: Lean Clay (CL)		IERRACO	IN	Exhibit: B-27

TOTAL STRESS PARAMETERS	f = 21.1	deg	C =	1.6	psi
	SPECIMEN NO.	1	2	3	4
50.00		INIT	TAL		
	Moisture Content - %	18.7	16.5	16.1	
10.00	Dry Density - pcf	103.9	111.4	116.5	
<u>\overline{\ove</u>	Diameter - inches	1.36	1.38	1.36	
<u></u>	Height - inches	2.81	2.83	2.80	
30.00 PA 20.00 PA 20.		AT T	EST		
2	Final Moisture - %	22.6	18.6	15.0	
σ _{20,00}	Dry Density - pcf	103.9	111.4	119.0	
<u> </u>	Calculated Diameter (in.)	1.34	1.36	1.35	
<u> </u>	Height - inches	2.75	2.78	2.76	
当 10.00 1	Effect. Cell Pressure - psi	6.0	16.0	32.0	
	Failure Stress - psi	11.47	22.22	40.63	
	Total Pore Pressure - psi	53.0	56.1	60.8	
0.00	Strain Rate - inches/min.	0.00030	0.00030	0.00030	
	Failure Strain - %	2.8	4.9	4.4	
AXIAL STRAIN - %	S₁ Failure - psi	17.47	38.22	72.63	
	S ₃ Failure - psi	6.00	16.00	32.00	
TEST DESCRIPTION		PROJEC	T INFOR	MATION	

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-4, ST-2, 8.5-10.5 ft ASSUMED SPECIFIC GRAVITY: 2.70

LL: 37 PL: 17 PI: 20 Percent -200: 93.7

REMARKS: Specimens trimmed to 1.4" diameter.

PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX PROJECT NO: N4165227

CLIENT: AEP DATE: 8/22/16

ATL. 0/22/10

TERRACON Exhibit: B-27

EFFECTIVE STRESS PARAMETERS	f '= 32.1	deg	c' =	1.0	psi
	SPECIMEN NO.	1	2	3	4
50.00		INIT	TAL		
	Moisture Content - %	17.2	17.1	14.4	
40.00	Dry Density - pcf	111.2	114.3	119.8	
₹0.00	Diameter - inches	1.90	1.90	1.93	
i i	Height - inches	3.99	4.01	4.00	
8 30.00 1 1 1 1 1 1 1 1 1 1		AT T	EST		
S 30.00	Final Moisture - %	18.5	16.4	14.0	
	Dry Density - pcf	111.2	115.9	121.4	
<u>e</u> 20.00	Calculated Diameter (in.)	1.89	1.88	1.91	
20.00 E H H 10.00	Height - inches	3.95	3.96	3.95	
台 10.00	Effect. Cell Pressure - psi	6.0	12.0	24.0	
	Failure Stress - psi	12.44	18.13	34.45	
	Total Pore Pressure - psi	51.3	56.6	60.2	
0.00	Strain Rate - inches/min.	0.00030	0.00030	0.00030	
	Failure Strain - %	3.1	2.6	2.7	
AXIAL STRAIN - %	S ₁ ' Failure - psi	17.12	23.52	48.22	
	S ₃ ' Failure - psi	4.68	5.39	13.77	
TEST DESCRIPTION		PROJEC	T INFOR	MATION	

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-5, ST-1, 5.0-7.0 ft
ASSUMED SPECIFIC GRAVITY: 2.70

LL: 33 PL: 16 PI: 17 Percent -200: 88.6 REMARKS: Specimens trimmed to 2.0" diameter.

PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX PROJECT NO: N4165227

CLIENT: AEP DATE: 8/22/16

TERRACON

EFFECTIVE STRESS PARAMETERS	$R^2 = 1.00$	a (deg) = 28.0	a (psi) =	0.9
PROJECT: Oklaunion- Ponds Area Dikes		TYPE OF TEST & NO: CU v	vith Pore Press	ure
PROJECT NO: N4165227		TERRACO	N	Exhibit: B-28
DESCRIPTION: Lean Clav (CL)		IERRACO	IN	EXHIBIT. D-20

TOTAL STRESS PARAMETERS	f =	22.6	deg	C =	1.4	psi
	SPECIMEN	NO.	1	2	3	4
50.00			INIT	TAL		
	Moisture Conte	ent - %	17.2	17.1	14.4	
10.00	Dry Density - p	ocf	111.2	114.3	119.8	
<u>₩</u> 40.00	Diameter - inch	nes	1.90	1.90	1.93	
	Height - inches	3	3.99	4.01	4.00	
SS 30.00			AT T	EST		
2	Final Moisture	- %	18.5	16.4	14.0	
6 20 00 H	Dry Density - p	ocf	111.2	115.9	121.4	
<u>e</u> 20.00	Calculated Dia	meter (in.)	1.89	1.88	1.91	
20.00 EV NO. 10.00	Height - inches	3	3.95	3.96	3.95	
当 10.00	Effect. Cell Pre	essure - psi	6.0	12.0	24.0	
	Failure Stress	- psi	12.44	18.13	34.45	
0.00	Total Pore Pre	ssure - psi	51.3	56.6	60.2	
0.00	Strain Rate - in	nches/min.	0.00030	0.00030	0.00030	
	Failure Strain -	%	3.1	2.6	2.7	
AXIAL STRAIN - %	S ₁ Failure - ps	i	18.44	30.13	58.45	
	S ₃ Failure - ps	i	6.00	12.00	24.00	
TEST DESCRIPTION			PROJEC	T INFOR	MATION	

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-5, ST-1, 5.0-7.0 ft ASSUMED SPECIFIC GRAVITY: 2.70

LL: 33 PL: 16 REMARKS: Specimens trimmed to 2.0" diameter.

PI: 17 Percent -200: 88.6

TERRACON

PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX

CLIENT: AEP

DATE: 8/22/16

PROJECT NO: N4165227

EFFECTIVE STRESS PARAMETERS	f '= 25.6 d		deg	c' =	2.2	psi
	SPECIMEN	NO.	1	2	3	4
50.00 40.00 30.00 20.00 0.	INITIAL					
	Moisture Content - %		17.4	16.3	16.0	
	Dry Density - pcf		110.3	114.3	117.5	
	Diameter - inches		1.37	1.36	1.36	
	Height - inches		2.78	2.78	2.80	
	AT TEST					
	Final Moisture - %		18.8	16.9	14.8	
	Dry Density - pcf		110.9	115.2	119.6	
	Calculated Diameter (in.)		1.36	1.35	1.34	
	Height - inches		2.75	2.74	2.74	
	Effect. Cell Pressure - psi		8.0	16.0	32.0	
	Failure Stress - psi		12.15	20.10	35.93	
	Total Pore Pressure - psi		53.2	59.3	62.6	
	Strain Rate - inches/min.		0.00030	0.00030	0.00030	
	Failure Strain - %		2.9	3.3	8.5	
	S ₁ ' Failure - psi		16.93	26.81	55.35	
S ₃ ' Failure -			4.78	6.71	19.42	
TEST DESCRIPTION		PROJECT INFORMATION				

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-5, ST-2, 12.0-14.0 ft ASSUMED SPECIFIC GRAVITY: 2.70

LL: 35 PL: 15 PI: 20 REMARKS: Specimens trimmed to 1.4" diameter.

Percent -200: 88.8

PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX PROJECT NO: N4165227

CLIENT: AEP

DATE: 8/19/16

Exhibit: B-29 **TERRACON**

EFFECTIVE STRESS PARAMETERS	$R^2 = 0.99$	a (deg) = 23.3	a (psi) =	2.0			
PROJECT: Oklaunion- Ponds Area Dikes TYPE OF TEST & NO: CU with Pore Pressure							
PROJECT NO: N4165227		TERRACO	NI .	Exhibit: B-29			
DESCRIPTION: Lean Clay (CL)		TERRACO	IN	EXHIDIL D-29			

TOTAL STRESS PARAMETERS	f = 19.3	deg	C =	1.5	psi
	SPECIMEN NO.	1	2	3	4
50.00		INIT	IAL		
	Moisture Content - %	17.4	16.3	16.0	
40.00	Dry Density - pcf	110.3	114.3	117.5	
<u>Ø</u>	Diameter - inches	1.37	1.36	1.36	
·	Height - inches	2.78	2.78	2.80	
30.00 PAIN 20.00 STRES 20.00 TO 10.00		AT T	EST		
<u> </u>	Final Moisture - %	18.8	16.9	14.8	
ິທ ⊈ 20.00	Dry Density - pcf	110.9	115.2	119.6	
20.00	Calculated Diameter (in.)	1.36	1.35	1.34	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Height - inches	2.75	2.74	2.74	
≝ 10.00 ₩	Effect. Cell Pressure - psi	8.0	16.0	32.0	
	Failure Stress - psi	12.15	20.10	35.93	
0.00	Total Pore Pressure - psi	53.2	59.3	62.6	
0.00	Strain Rate - inches/min.	0.00030	0.00030	0.00030	
	Failure Strain - %	2.9	3.3	8.5	
AXIAL STRAIN - %	S ₁ Failure - psi	20.15	36.10	67.93	
	S ₃ Failure - psi	8.00	16.00	32.00	
TEST DESCRIPTION		PROJEC	T INFOR	MATION	

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-5, ST-2, 12.0-14.0 ft
ASSUMED SPECIFIC GRAVITY: 2.70

LL: 35 PL: 15 PI: 20 Percent -200: 88.8

REMARKS: Specimens trimmed to 1.4" diameter.

PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX PROJECT NO: N4165227

PROJECT NO. N410322

CLIENT: AEP DATE: 8/19/16

TERRACON Exhibit: B-29

EFFECTIVE STRESS PARAMETERS	f '=	20.4	deg	c' =	2.7	psi
	SPECIMEN	NO.	1	2	3	4
50.00			INIT	TAL		
	Moisture Conte	nt - %	16.3	16.6	16.1	
40.00	Dry Density - p	cf	112.0	115.3	116.9	
<u>\overline{\over</u>	Diameter - inch	es	1.92	1.90	1.90	
	Height - inches		3.92	3.98	3.96	
8 30.00 8 30.00	AT TEST					
2	Final Moisture -	· %	18.2	17.0	15.1	
	Dry Density - p	cf	112.1	115.3	118.7	
<u>e</u> 20.00	Calculated Diar	meter (in.)	1.90	1.90	1.87	
20.00 H	Height - inches		3.86	3.95	3.86	
台 10.00	Effect. Cell Pre	ssure - psi	6.0	12.0	24.0	
	Failure Stress -	psi	12.90	14.97	21.10	
0.00	Total Pore Pres	ssure - psi	50.9	55.6	61.4	
0.00	Strain Rate - in	ches/min.	0.00040	0.00040	0.00040	
	Failure Strain -	%	2.0	0.8	2.5	
AXIAL STRAIN - %	S ₁ ' Failure - ps	i	17.98	21.36	33.66	
	S ₃ ' Failure - ps	i	5.08	6.39	12.56	
TEST DESCRIPTION			PROJEC	T INFOR	MATION	

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-6, ST-1, 5.0-7.0 ft ASSUMED SPECIFIC GRAVITY: 2.70

LL: 35 PL: 15 PI: 20 Percent -200: 86.3

REMARKS: Specimens trimmed to 2.0" diameter.

PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX

PROJECT NO: N4165227

CLIENT: AEP DATE: 8/22/16

TERRACON

EFFECTIVE STRESS PARAMETERS	$R^2 = 1.00$	a (deg) = 19.2	a (psi) =	2.5
PROJECT: Oklaunion- Ponds Area Dikes		TYPE OF TEST & NO: CU v	vith Pore Press	sure
PROJECT NO: N4165227		TERRACO	N	Exhibit: B-30
DESCRIPTION: Lean Clay (CL)		IERRACO	IN	EXHIBIT. D-30

TOTAL STRESS PARAMETERS	f = 10.9	deg	C =	4.1	psi
	SPECIMEN NO.	1	2	3	4
50.00		INIT	IAL		
	Moisture Content - %	16.3	16.6	16.1	
40.00	Dry Density - pcf	112.0	115.3	116.9	
<u>Ø</u>	Diameter - inches	1.92	1.90	1.90	
	Height - inches	3.92	3.98	3.96	
30.00 PKIND 20.00 STRESS 10.00		AT T	EST		
<u> </u>	Final Moisture - %	18.2	17.0	15.1	
ω 20 00 M	Dry Density - pcf	112.1	115.3	118.7	
g 20.00	Calculated Diameter (in.)	1.90	1.90	1.87	
<u> </u>	Height - inches	3.86	3.95	3.86	
台 10.00	Effect. Cell Pressure - psi	6.0	12.0	24.0	
	Failure Stress - psi	12.90	14.97	21.10	
	Total Pore Pressure - psi	50.9	55.6	61.4	
0.00	Strain Rate - inches/min.	0.00040	0.00040	0.00040	
	Failure Strain - %	2.0	0.8	2.5	
AXIAL STRAIN - %	S ₁ Failure - psi	18.90	26.97	45.10	
	S ₃ Failure - psi	6.00	12.00	24.00	
TEST DESCRIPTION		PROJEC	T INFOR	MATION	

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-6, ST-1, 5.0-7.0 ft ASSUMED SPECIFIC GRAVITY: 2.70

LL: 35 PL: 15 PI: 20 Percent -200: 86.3

REMARKS: Specimens trimmed to 2.0" diameter.

PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX

PROJECT NO: N4165227

CLIENT: AEP DATE: 8/22/16

TERRACON

EFFECTIVE STRESS PARAMETERS	f '= 32.8	deg	c' =	0.2	psi
	SPECIMEN NO.	1	2	3	4
120.00		INIT	IAL		
	Moisture Content - %	14.4	13.9	12.8	
100.00	Dry Density - pcf	115.9	116.7	118.3	
<u>≅</u>	Diameter - inches	1.93	1.96	1.96	
80.00	Height - inches	4.00	4.00	4.00	
60.00 - /		AT T	EST		
60.00	Final Moisture - %	16.3	15.8	14.7	
	Dry Density - pcf	116.2	117.9	119.7	
40.00	Calculated Diameter (in.)	1.92	1.95	1.94	
40.00 H	Height - inches	3.96	3.96	3.93	
₩ 20.00	Effect. Cell Pressure - psi	8.0	16.0	32.0	
20.00	Failure Stress - psi	9.96	23.45	43.15	
	Total Pore Pressure - psi	52.8	58.3	63.5	
0.00	Strain Rate - inches/min.	0.00040	0.00040	0.00040	
	Failure Strain - %	0.7	2.9	1.6	
AXIAL STRAIN - %	S ₁ ' Failure - psi	15.15	31.20	61.64	
	S ₃ ' Failure - psi	5.19	7.75	18.49	
TEST DESCRIPTION		PROJEC	T INFOR	MATION	·

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-6, ST-2, 12.0-14.0 ft
ASSUMED SPECIFIC GRAVITY: 2.70

LL: 29 PL: 14 PI: 15 Percent -200: 87.4

REMARKS: Specimens trimmed to 2.0" diameter.

PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX

PROJECT NO: N4165227

CLIENT: AEP DATE: 8/22/16

TERRACON Exhibit: B-31

EFFECTIVE STRESS PARAMETERS	$R^2 = 0.99$	a (deg) = 28.5	a (psi) =	0.2			
PROJECT: Oklaunion- Ponds Area Dikes TYPE OF TEST & NO: CU with Pore Pressure							
PROJECT NO: N4165227		TERRACO	NI .	Exhibit: B-31			
DESCRIPTION: Lean Clav (CL)		TERRACO	IN	EXHIDIL D-31			

TOTAL STRESS PARAMETERS	f =	23.9	deg	c =	0.0	psi
	SPECIMEN	NO.	1	2	3	4
120.00			INIT	TAL		
	Moisture Conte	nt - %	14.4	13.9	12.8	
100.00	Dry Density - po	cf	115.9	116.7	118.3	
<u>\[\frac{\lambda}{\lambda} \] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </u>	Diameter - inch	es	1.93	1.96	1.96	
80.00	Height - inches		4.00	4.00	4.00	
88			AT T	EST		
60.00	Final Moisture -	%	16.3	15.8	14.7	
8	Dry Density - po	cf	116.2	117.9	119.7	
40.00	Calculated Dian	neter (in.)	1.92	1.95	1.94	
40.00 40.00 40.00	Height - inches		3.96	3.96	3.93	
20.00	Effect. Cell Pres	ssure - psi	8.0	16.0	32.0	
20.00	Failure Stress -	psi	9.96	23.45	43.15	
0.00	Total Pore Pres	sure - psi	52.8	58.3	63.5	
0.00	Strain Rate - ind	ches/min.	0.00040	0.00040	0.00040	
	Failure Strain -	%	0.7	2.9	1.6	
AXIAL STRAIN - %	S ₁ Failure - psi		17.96	39.45	75.15	
	S ₃ Failure - psi	ı	8.00	16.00	32.00	
TEST DESCRIPTION			PROJEC	T INFOR	MATION	

TYPE OF TEST & NO: CU with Pore Pressure

SAMPLE TYPE: Tube

DESCRIPTION: Lean Clay (CL)

SAMPLE LOCATION: B-6, ST-2, 12.0-14.0 ft
ASSUMED SPECIFIC GRAVITY: 2.70

LL: 29 PL: 14 PI: 15 Percent -200: 87.4

REMARKS: Specimens trimmed to 2.0" diameter.

PROJECT INFORMATION
PROJECT: Oklaunion- Ponds Area Dikes

LOCATION: Vernon, TX

PROJECT NO: N4165227

CLIENT: AEP DATE: 8/22/16

TERRACON

Project :	Oklaunion-	Ponds Area	Dikes						
Date:	8/18/2016			Pan	el Number :	P-1			
Project No. :	N4165227					rmometer Da	ata		
Boring No.:	B-1		a _p =	0.031416		Set Mercury to Pipet Rp at	Equilibrium	1.6	cm ³
Sample:	ST-1		a _a =	0.767120	cm ²	beginning	Pipet Rp	23.0	cm ³
Depth (ft):	5.0-7.0		$M_1 =$	0.030180	C =	0.0012949	Annulus Ra	0.7	cm ³
Other Location:	Tube		$M_2 =$	1.040953	T =	0.046677			
Material Des	cription:	Lean Clay							
				SAMPLE	DATA				
Wet Wt. sam	nole + ring o	r tare ·	386.73	g					
Tare or ring		i iai o .	0.0	_9 _g		Before	e Test	After	Test
Wet Wt: of S			386.73	g	_	Tare No.:	SW	Tare No.:	
Diameter:	1.91	in	4.86	cm ²		Wet Wt.+tare:	130.17	Wet Wt.+tare:	
Length:	3.95	in	10.04	cm	_	Dry Wt.+tare:	115.28	Dry Wt.+tare:	
Area:	2.88	in^2	18.56	cm ²		Tare Wt:	30.50	Tare Wt:	
Volume :	11.37	in^3	186.29	cm ³		Dry Wt.:	84.78	_Dry Wt.:	
Unit Wt.(wet):	129.54	pcf	2.08	g/cm ^{^3}		Water Wt.:	14.89	Water Wt.:	
Unit Wt.(dry):	110.19	pcf	1.77	g/cm ^{^3}		% moist.:	17.6	% moist.:	
Assumed S	pecific Gravity:	2.70	Max Dry D	ensity(pcf) = % of max =		OMC =		_	
Calculated %	saturation:		Void r	% of max =	0.530	+/- OMC = Porosity (n)=	0.346	_	
		Too	4 Draceura	o During Hy	draulia Can	ductivity To	n4		
Cell Pres	ssure (psi) =	Tes 55.00		es During Hydessure (psi) =	50.00	Confining	Pressure =	5.00 ective Confining	psi Pressure
Cell Pres	. ,	55.00		essure (psi) =	50.00	Confining Note: The abov	Pressure =		•
	. ,	55.00	Back Pro	essure (psi) =	: 50.00 ADINGS	Confining Note: The abov	Pressure =		•
Z ₁ (Mercury F	Height Differe elapsed t (seconds)	55.00 ence @ t ₁): Z (pipet @ t)	Back Pro	essure (psi) = TEST RE.	: 50.00 ADINGS Hydraulic (a (temp corr)	Confining Note: The abov Gradient = k (cm/sec)	Pressure = re value is Effective 28.00 k (ft./day)		•
Z ₁ (Mercury F Date 8/9/2016	elapsed t (seconds) 300	55.00 ence @ t ₁): Z (pipet @ t) 22.55	22.3 DZp (cm) 0.473826	temp (deg C) 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977	Confining Note: The abov Gradient = k (cm/sec) 9.43E-08	Pressure = 28.00 k (ft./day) 2.67E-04	ective Confining	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600	55.00 ence @ t ₁): Z (pipet @ t) 22.55 22.25	22.3 DZp (cm) 0.473826 0.773826	temp (deg C) 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 9.43E-08 7.76E-08	Pressure = 28.00 k (ft./day) 2.67E-04 2.20E-04	ective Confining	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.55 22.25 22.05	22.3 DZp (cm) 0.473826 0.773826 0.973826	temp (deg C) 21 21 21	= 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977	Confining Note: The abov Gradient =	Pressure = 28.00 k (ft./day) 2.67E-04 2.20E-04 1.85E-04	ective Confining	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.55 22.25	22.3 DZp (cm) 0.473826 0.773826	temp (deg C) 21 21 21 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 9.43E-08 7.76E-08	Pressure = 28.00 k (ft./day) 2.67E-04 2.20E-04	ective Confining	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.55 22.25 22.05 21.9	22.3 DZp (cm) 0.473826 0.773826 0.973826 1.123826	temp (deg C) 21 21 21 SUMM	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 9.43E-08 7.76E-08 6.54E-08 5.68E-08	Pressure = re value is Effe 28.00 k (ft./day) 2.67E-04 2.20E-04 1.85E-04 1.61E-04	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.55 22.25 22.05 21.9	22.3 DZp (cm) 0.473826 0.773826 0.973826	temp (deg C) 21 21 21 SUMM	E 50.00 ADINGS Hydraulic (a (temp corr)	Confining Note: The abov Gradient =	Pressure = re value is Effe 28.00 k (ft./day) 2.67E-04 2.20E-04 1.85E-04 1.61E-04	Reset = *	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.55 22.25 22.05 21.9 ka = ki	22.3 DZp (cm) 0.473826 0.773826 0.973826 1.123826 7.35E-08	temp (deg C) 21 21 21 SUMM cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr)	Confining Note: The abov Gradient =	Pressure = re value is Effe 28.00 k (ft./day) 2.67E-04 2.20E-04 1.85E-04 1.61E-04	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.55 22.25 22.05 21.9	22.3 DZp (cm) 0.473826 0.773826 0.973826 1.123826	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr)	Confining Note: The abov Gradient = k (cm/sec) 9.43E-08 7.76E-08 6.54E-08 5.68E-08	Pressure = re value is Effe 28.00 k (ft./day) 2.67E-04 2.20E-04 1.85E-04 1.61E-04	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.55 22.25 22.05 21.9 ka = ki k1 =	22.3 DZp (cm) 0.473826 0.773826 0.973826 1.123826 7.35E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 28.3	Confining Note: The abov Gradient = k (cm/sec) 9.43E-08 7.76E-08 6.54E-08 5.68E-08 Acceptance	Pressure = re value is Effe 28.00 k (ft./day) 2.67E-04 2.20E-04 1.85E-04 1.61E-04	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.55 22.25 22.05 21.9 ka = ki k1 = k2 =	22.3 DZp (cm) 0.473826 0.773826 0.973826 1.123826 7.35E-08 9.43E-08 7.76E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 28.3 5.5	Confining Note: The abov Gradient = k (cm/sec) 9.43E-08 7.76E-08 6.54E-08 5.68E-08 Acceptance % %	Pressure = re value is Effe 28.00 k (ft./day) 2.67E-04 2.20E-04 1.85E-04 1.61E-04	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 3 300 5 600 5 900 6 1200	55.00 ence @ t ₁): Z (pipet @ t) 22.55 22.25 22.05 21.9 ka = ki k1 = k2 = k3 = k4 =	22.3 DZp (cm) 0.473826 0.773826 0.973826 1.123826 7.35E-08 9.43E-08 7.76E-08 6.54E-08 5.68E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 28.3 5.5 11.1 22.7	Confining Note: The abov Gradient = k (cm/sec) 9.43E-08 7.76E-08 6.54E-08 5.68E-08 Acceptance % % % %	Pressure = re value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.55 22.25 22.05 21.9 ka = ki k1 = k2 = k3 = k4 =	22.3 DZp (cm) 0.473826 0.773826 0.973826 1.123826 7.35E-08 9.43E-08 7.76E-08 6.54E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 7.35E-08	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 28.3 5.5 11.1	Confining Note: The abov Gradient = k (cm/sec) 9.43E-08 7.76E-08 6.54E-08 5.68E-08 Acceptance % % %	Pressure = re value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 5 900 5 1200	55.00 ence @ t ₁): Z (pipet @ t) 22.55 22.25 22.05 21.9 ka = ki k1 = k2 = k3 = k4 =	22.3 DZp (cm) 0.473826 0.773826 0.973826 1.123826 7.35E-08 9.43E-08 7.76E-08 6.54E-08 5.68E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec 7.35E-08	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 28.3 5.5 11.1 22.7	Confining Note: The abov Gradient = k (cm/sec) 9.43E-08 7.76E-08 6.54E-08 5.68E-08 Acceptance % % % %	Pressure = re value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 5 900 6 1200 Hydraulic c Void Ratio	55.00 ence @ t ₁): Z (pipet @ t) 22.55 22.25 22.05 21.9 ka = ki k1 = k2 = k3 = k4 = enconductivity	22.3 DZp (cm) 0.473826 0.773826 0.973826 1.123826 7.35E-08 9.43E-08 7.76E-08 6.54E-08 5.68E-08	temp (deg C) 21 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 7.35E-08	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 28.3 5.5 11.1 22.7 cm/sec	Confining Note: The abov Gradient = k (cm/sec) 9.43E-08 7.76E-08 6.54E-08 5.68E-08 Acceptance % % % %	Pressure = re value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900 1200 Hydraulic c Void Ratio Porosity	55.00 ence @ t ₁): Z (pipet @ t) 22.55 22.25 22.05 21.9 ka = ki k1 = k2 = k3 = k4 = enconductivity	22.3 DZp (cm) 0.473826 0.773826 0.973826 1.123826 7.35E-08 9.43E-08 7.76E-08 6.54E-08 5.68E-08	temp (deg C) 21 21 21 21 SUMM cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 28.3 5.5 11.1 22.7 cm/sec	Confining Note: The abov Gradient = k (cm/sec) 9.43E-08 7.76E-08 6.54E-08 5.68E-08 Acceptance % % % % 2.08E-04	Pressure = re value is Effect 28.00	Reset = *	Pressure

Project :	Oklaunion-	Ponds Area	Dikes						
Date:	8/18/2016			Pan	el Number :	P-1			
Project No. :						rmometer Da	- ata		
Boring No.:	B-1		a _p =	0.031416	•	Set Mercury to Pipet Rp at	Equilibrium	1.6	cm ³
Sample:	ST-2		a _a =	0.767120	cm ²	beginning	Pipet Rp	16.8	cm ³
Depth (ft):	12.0-14.0		$M_1 =$	0.030180	C =	0.0017444	Annulus Ra	1.0	cm ³
Other Location:	Tube		$M_2 =$	1.040953	T =	0.0658881			
Material Des	cription:	Lean Clay							
				SAMPLE	DATA				
Wet Wt. sam	nnle + ring o	r tare ·	149.04	g					
Tare or ring		i taro .	0.0	_9 _g		Before	e Test	After	Test
Wet Wt: of S		•	149.04	<u>g</u>	_	Tare No.:	MCE	Tare No.:	
Diameter:	1.39	in	3.53	cm ²	="	Wet Wt.+tare:	139.66	Wet Wt.+tare:	
Length:	2.80	in	7.11	cm	_	Dry Wt.+tare:	125.54	Dry Wt.+tare:	
Area:	1.51	in^2	9.76	cm ²		Tare Wt:	30.82	Tare Wt:	
Volume :	4.24	in^3	69.40	cm ³		Dry Wt.:	94.72	_Dry Wt.:	
Unit Wt.(wet):		pcf	2.15	g/cm ^{^3}		Water Wt.:	14.12	Water Wt.:	
Unit Wt.(dry):	116.62	pcf	1.87	g/cm ^{^3}		% moist.:	14.9	_% moist.:	
Assumed S	Specific Gravity:	2.70	Max Dry D	Density(pcf) =		OMC =		_	
Calculated %	saturation:		Void r	% of max = atio (e) =	0.419	+/- OMC = Porosity (n)=	0.295	- -	
	ssure (psi) =	55.00		es During Hydessure (psi) =	50.00 ADINGS	Confining Note: The abov	Pressure =	= 5.00 ective Confining	psi Pressure
Cell Pres		55.00		essure (psi) =	50.00 ADINGS	Confining	Pressure =		•
		55.00	Back Pro	essure (psi) =	50.00 ADINGS	Confining Note: The abov	Pressure = re value is Effe		•
Z ₁ (Mercury F	Height Differe elapsed t (seconds)	55.00 ence @ t ₁): Z (pipet @ t)	Back Pro	TEST REACT temp (deg C)	E 50.00 ADINGS Hydraulic (a (temp corr)	Confining Note: The abov Gradient = k (cm/sec)	Pressure = ye value is Effective 28.00 k (ft./day)	ective Confining Reset = *	•
Z ₁ (Mercury F	Height Difference elapsed to (seconds) 300	55.00 ence @ t ₁): Z (pipet @ t) 16.55	15.8 DZp (cm) 0.227244	ressure (psi) = TEST REA cm temp (deg C) 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977	Confining Note: The abov Gradient = k (cm/sec) 8.57E-08	Pressure = /e value is Effe 28.00 k (ft./day) 2.43E-04	Reset = *	•
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45	15.8 DZp (cm) 0.227244 0.327244	temp (deg C) 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 8.57E-08 6.19E-08	Pressure = re value is Effect	Reset = *	•
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.35	15.8 DZp (cm) 0.227244 0.327244 0.427244	temp (deg C) 21 21 21	a (temp corr) 0.977 0.977	Confining Note: The abov Gradient =	Pressure = re value is Effe 28.00 k (ft./day) 2.43E-04 1.75E-04	Reset = *	•
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45	15.8 DZp (cm) 0.227244 0.327244	temp (deg C) 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 8.57E-08 6.19E-08	Pressure = re value is Effect	Reset = *	•
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.35	15.8 DZp (cm) 0.227244 0.327244 0.427244	temp (deg C) 21 21 21	a (temp corr) 0.977 0.977 0.977	Confining Note: The abov Gradient =	Pressure = re value is Effe 28.00 k (ft./day) 2.43E-04 1.75E-04	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.35 16.25	15.8 DZp (cm) 0.227244 0.327244 0.427244	temp (deg C) 21 21 21 SUMM	a (temp corr) 0.977 0.977 0.977 ARY	Confining Note: The abov Gradient =	Pressure = re value is Effe 28.00 k (ft./day) 2.43E-04 1.75E-04 1.53E-04 1.42E-04	Reset = *	•
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.35 16.25 ka = ki	15.8 DZp (cm) 0.227244 0.327244 0.427244 0.527244 6.30E-08	temp (deg C) 21 21 21 SUMM cm/sec	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY	Confining Note: The abov Gradient =	Pressure = re value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.35 16.25 ka = ki k1 =	15.8 DZp (cm) 0.227244 0.327244 0.427244 0.527244 6.30E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec	a (temp corr) 0.977 0.977 0.977 ARY	Confining Note: The abov Gradient =	Pressure = re value is Effe 28.00 k (ft./day) 2.43E-04 1.75E-04 1.53E-04 1.42E-04	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.35 16.25 ka = ki k1 = k2 =	15.8 DZp (cm) 0.227244 0.327244 0.427244 0.527244 6.30E-08 8.57E-08 6.19E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 36.1 1.7	Confining Note: The abov Gradient =	Pressure = re value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.35 16.25 ka = ki k1 =	15.8 DZp (cm) 0.227244 0.327244 0.427244 0.527244 6.30E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec	a (temp corr) 0.977 0.977 0.977 ARY	Confining Note: The abov Gradient =	Pressure = re value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 6 300 6 600 6 900 6 1200	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.35 16.25 ka = ki k1 = k2 = k3 = k4 =	15.8 DZp (cm) 0.227244 0.327244 0.427244 0.527244 6.30E-08 8.57E-08 6.19E-08 5.41E-08 5.02E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec	* 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 36.1 1.7 14.1 20.3	Confining Note: The abov Gradient = k (cm/sec) 8.57E-08 6.19E-08 5.41E-08 5.02E-08 Acceptance % % % %	Pressure = re value is Effect	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 6 300 6 600 5 900 6 1200	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.35 16.25 ka = ki k1 = k2 = k3 =	15.8 DZp (cm) 0.227244 0.327244 0.427244 0.527244 6.30E-08 8.57E-08 6.19E-08 5.41E-08 5.02E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 6.30E-08	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 36.1 1.7 14.1	Confining Note: The abov Gradient =	Pressure = re value is Effect	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 5 900 6 1200 Hydraulic c Void Ratio	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.35 16.25 ka = ki k1 = k2 = k3 = k4 =	15.8 DZp (cm) 0.227244 0.327244 0.427244 0.527244 6.30E-08 8.57E-08 6.19E-08 5.41E-08 5.02E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec	* 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 36.1 1.7 14.1 20.3	Confining Note: The abov Gradient = k (cm/sec) 8.57E-08 6.19E-08 5.41E-08 5.02E-08 Acceptance % % % %	Pressure = re value is Effect	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 1200 Hydraulic c Void Ratio Porosity	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.35 16.25 ka = ki k1 = k2 = k3 = k4 = conductivity	15.8 DZp (cm) 0.227244 0.327244 0.427244 0.527244 6.30E-08 8.57E-08 6.19E-08 5.41E-08 5.02E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 6.30E-08	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 36.1 1.7 14.1 20.3 cm/sec	Confining Note: The abov Gradient = k (cm/sec) 8.57E-08 6.19E-08 5.41E-08 5.02E-08 Acceptance % % % % 1.78E-04	Pressure = re value is Effect	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900 6 1200 Hydraulic c Void Ratio Porosity Bulk Densit	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.35 16.25 Ka = ki k1 = k2 = k3 = k4 = conductivity	15.8 DZp (cm) 0.227244 0.327244 0.427244 0.527244 6.30E-08 8.57E-08 6.19E-08 5.41E-08 5.02E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	* 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 36.1 1.7 14.1 20.3 cm/sec	Confining Note: The above Gradient = k (cm/sec) 8.57E-08 6.19E-08 5.41E-08 5.02E-08 Acceptance % % % % 1.78E-04	Pressure = re value is Effect 28.00	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 1200 Hydraulic c Void Ratio Porosity	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.35 16.25 ka = ki k1 = k2 = k3 = k4 = expected with the second continuity ty tent	15.8 DZp (cm) 0.227244 0.327244 0.427244 0.527244 6.30E-08 8.57E-08 6.19E-08 5.41E-08 5.02E-08	temp (deg C) 21 21 21 21 21 SUMM cm/sec	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 36.1 1.7 14.1 20.3 cm/sec	Confining Note: The abov Gradient = k (cm/sec) 8.57E-08 6.19E-08 5.41E-08 5.02E-08 Acceptance % % % % 1.78E-04	Pressure = re value is Effect 28.00 k (ft./day) 2.43E-04 1.75E-04 1.53E-04 1.42E-04 criteria = Vm = ft/day	Reset = *	Pressure

Project :	Oklaunion-	Ponds Area	Dikes						
Date:	8/18/2016			Pan	el Number :	P-1			
Project No. :						rmometer Da	- ata		
Boring No.:	B-2		a _p =	0.031416	_	Set Mercury to Pipet Rp at	Equilibrium	1.6	cm ³
Sample:	ST-1		a _a =	0.767120	cm ²	beginning	Pipet Rp	23.3	cm ³
Depth (ft):	5.0-7.0		$M_1 =$	0.030180	C =	0.0012537	Annulus Ra	0.7	cm ³
Other Location:	Tube		$M_2 =$	1.040953	T =	0.0461629			
Material Des	cription :	Lean Clay							
				SAMPLE	DATA				
\\/ a + \\/ \\ a = m			444.00						
Wet Wt. sam Tare or ring		tare:	414.99 0.0	_g _g		Before	a Toet	After	Toet
Wet Wt: of S			414.99	_g g		Tare No.:	25	Tare No.:	1631
Diameter :		in	4.97	cm ²	_	Wet Wt.+tare:	179.61	Wet Wt.+tare:	
Length:		in	10.15	cm		Dry Wt.+tare:	160.12	Dry Wt.+tare:	
Area:	3.00	in^2	19.39	cm ²	_	Tare Wt:	30.91	Tare Wt:	
Volume :	12.00	in^3	196.72	cm ³		Dry Wt.:	129.21	Dry Wt.:	
Unit Wt.(wet):	131.64	pcf	2.11	g/cm ^{^3}		Water Wt.:	19.49	Water Wt.:	
Unit Wt.(dry):	114.38	pcf	1.83	g/cm ^{^3}		% moist.:	15.1	% moist.:	
Assumed S	pecific Gravity:	2.70	Max Dry D	Density(pcf) =		OMC =		_	
Calculated %	caturation:		Void r	% of max = atio (e) =	0.441	+/- OMC = Porosity (n)=	0.306	-	
Calculated /	Saturation.		Volu	allo (e) =	0.441	Polosity (II)=	0.300	_	
		Tes	t Pressure	s During Hyd	draulic Con	ductivity Te	st		
Cell Pres	ssure (psi) =	Tes 55.00		es During Hydessure (psi) =		-	st Pressure =	5.00	psi
Cell Pres	ssure (psi) =			essure (psi) =	50.00	Confining	Pressure =	5.00 ective Confining F	•
		55.00	Back Pro	essure (psi) =	50.00 ADINGS	Confining Note: The abov	Pressure = re value is Effe		•
Cell Pres		55.00		essure (psi) =	50.00	Confining Note: The abov	Pressure =		•
		55.00	Back Pro	essure (psi) =	50.00 ADINGS	Confining Note: The abov	Pressure = re value is Effe		•
Z ₁ (Mercury F	Height Differe	55.00 ence @ t ₁):	Back Pro	TEST REA	50.00 ADINGS Hydraulic (Confining Note: The abov Gradient =	Pressure = ye value is Effe		•
Z ₁ (Mercury F	Height Differe elapsed t (seconds) 3 300	55.00 ence @ t ₁): Z (pipet @ t) 22.25	22.5 DZp (cm) 1.012411	temp (deg C) 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977	Confining Note: The abov Gradient = k (cm/sec) 1.95E-07	Pressure = /e value is Effe 28.00 k (ft./day) 5.54E-04	ective Confining I	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016	elapsed t (seconds) 3 300 6 600	55.00 ence @ t ₁): Z (pipet @ t) 22.25 21.65	22.5 DZp (cm) 1.012411 1.612411	temp (deg C) 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 1.95E-07 1.58E-07	Pressure = re value is Effective 28.00 k (ft./day) 5.54E-04 4.48E-04	ective Confining I	•
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.25 21.65 21.2	22.5 DZp (cm) 1.012411 1.612411 2.062411	temp (deg C) 21 21 21	a (temp corr) 0.977 0.977	Confining Note: The abov Gradient =	Pressure = re value is Effe 28.00 k (ft./day) 5.54E-04 4.48E-04 3.86E-04	ective Confining I	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.25 21.65	22.5 DZp (cm) 1.012411 1.612411	temp (deg C) 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 1.95E-07 1.58E-07	Pressure = re value is Effective 28.00 k (ft./day) 5.54E-04 4.48E-04	ective Confining I	•
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.25 21.65 21.2	22.5 DZp (cm) 1.012411 1.612411 2.062411	temp (deg C) 21 21 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977	Confining Note: The abov Gradient =	Pressure = re value is Effe 28.00 k (ft./day) 5.54E-04 4.48E-04 3.86E-04	ective Confining I	•
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.25 21.65 21.2	22.5 DZp (cm) 1.012411 1.612411 2.062411	temp (deg C) 21 21 21 SUMM	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977	Confining Note: The abov Gradient =	Pressure = re value is Effe 28.00 k (ft./day) 5.54E-04 4.48E-04 3.86E-04 3.42E-04	Reset = *	•
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.25 21.65 21.2 20.85 ka = ki	22.5 DZp (cm) 1.012411 1.612411 2.062411 2.412411	temp (deg C) 21 21 21 21 SUMM cm/sec	a (temp corr) 0.977 0.977 0.977 ARY	Confining Note: The abov Gradient =	Pressure = re value is Effective value val	Reset = *	Pressure %
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.25 21.65 21.2 20.85 ka = ki k1 =	22.5 DZp (cm) 1.012411 1.612411 2.062411 2.412411 1.52E-07	temp (deg C) 21 21 21 SUMM cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 28.1	Confining Note: The abov Gradient = k (cm/sec) 1.95E-07 1.58E-07 1.36E-07 1.20E-07 Acceptance	Pressure = re value is Effe 28.00 k (ft./day) 5.54E-04 4.48E-04 3.86E-04 3.42E-04	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.25 21.65 21.2 20.85 ka = ki k1 = k2 =	22.5 DZp (cm) 1.012411 1.612411 2.062411 2.412411 1.52E-07 1.95E-07 1.58E-07	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 28.1 3.5	Confining Note: The abov Gradient =	Pressure = re value is Effective value val	Reset = *	Pressure %
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.25 21.65 21.2 20.85 ka = ki k1 = k2 = k3 =	22.5 DZp (cm) 1.012411 1.612411 2.062411 2.412411 1.52E-07 1.95E-07 1.58E-07 1.36E-07	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 28.1 3.5 10.7	Confining Note: The abov Gradient = k (cm/sec) 1.95E-07 1.58E-07 1.36E-07 1.20E-07 Acceptance % % %	Pressure = re value is Effective value val	Reset = *	Pressure %
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.25 21.65 21.2 20.85 ka = ki k1 = k2 =	22.5 DZp (cm) 1.012411 1.612411 2.062411 2.412411 1.52E-07 1.95E-07 1.58E-07	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 28.1 3.5	Confining Note: The abov Gradient =	Pressure = re value is Effective value val	Reset = *	Pressure %
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 22.25 21.65 21.2 20.85 ka = ki k1 = k2 = k3 = k4 =	22.5 DZp (cm) 1.012411 1.612411 2.062411 2.412411 1.52E-07 1.95E-07 1.58E-07 1.36E-07	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 28.1 3.5 10.7	Confining Note: The abov Gradient = k (cm/sec) 1.95E-07 1.58E-07 1.36E-07 1.20E-07 Acceptance % % %	Pressure = re value is Effective value val	Reset = *	Pressure %
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 3 300 6 600 5 900 6 1200	55.00 ence @ t ₁): Z (pipet @ t) 22.25 21.65 21.2 20.85 ka = ki k1 = k2 = k3 = k4 =	22.5 DZp (cm) 1.012411 1.612411 2.062411 2.412411 1.52E-07 1.95E-07 1.58E-07 1.36E-07 1.20E-07	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 28.1 3.5 10.7 21.0	Confining Note: The abov Gradient = k (cm/sec) 1.95E-07 1.58E-07 1.36E-07 1.20E-07 Acceptance % % % %	Pressure = re value is Effective value val	Reset = *	Pressure %
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 1200 Hydraulic co	55.00 ence @ t ₁): Z (pipet @ t) 22.25 21.65 21.2 20.85 ka = ki k1 = k2 = k3 = k4 = conductivity	22.5 DZp (cm) 1.012411 1.612411 2.062411 2.412411 1.52E-07 1.95E-07 1.58E-07 1.36E-07 1.20E-07	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec 1.52E-07	* 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 28.1 3.5 10.7 21.0 cm/sec	Confining Note: The abov Gradient = k (cm/sec) 1.95E-07 1.58E-07 1.36E-07 1.20E-07 Acceptance % % % % % 4.32E-04	Pressure = re value is Effective value val	Reset = *	Pressure %
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900 1200 Hydraulic co Void Ratio Porosity Bulk Density	55.00 ence @ t ₁): Z (pipet @ t) 22.25 21.65 21.2 20.85 ka = ki k1 = k2 = k3 = k4 = onductivity	22.5 DZp (cm) 1.012411 1.612411 2.062411 2.412411 1.52E-07 1.58E-07 1.36E-07 1.20E-07	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 1.52E-07	* 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 28.1 3.5 10.7 21.0 cm/sec	Confining Note: The abov Gradient = k (cm/sec) 1.95E-07 1.58E-07 1.36E-07 1.20E-07 Acceptance % % % % % 131.6	Pressure = re value is Effect 28.00	Reset = *	Pressure %
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 1200 Hydraulic co	55.00 ence @ t ₁): Z (pipet @ t) 22.25 21.65 21.2 20.85 ka = ki k1 = k2 = k3 = k4 = expendence k4 = expend	22.5 DZp (cm) 1.012411 1.612411 2.062411 2.412411 1.52E-07 1.95E-07 1.58E-07 1.36E-07 1.20E-07	temp (deg C) 21 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	* 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 28.1 3.5 10.7 21.0 cm/sec	Confining Note: The abov Gradient = k (cm/sec) 1.95E-07 1.58E-07 1.36E-07 1.20E-07 Acceptance % % % % % 4.32E-04	Pressure = re value is Effect 28.00	Reset = *	Pressure %

Project :	Oklaunion-	Ponds Area	Dikes						
Date:	8/18/2016			Pan	el Number :	P-1			
Project No. :	N4165227					rmometer Da	- ata		
Boring No.:	B-2		a _p =	0.031416		Set Mercury to Pipet Rp at	Equilibrium	1.6	cm ³
Sample:	ST-2		a _a =	0.767120	cm ²	beginning	Pipet Rp	16.8	cm ³
Depth (ft):	12.0-14.0		$M_1 =$	0.030180) C =	0.001714	Annulus Ra	1.0	cm ³
Other Location:	Tube		$M_2 =$	1.040953	3 T =	0.0657237			
Material Des	cription:	Lean Clay w	ith Sand						
				SAMPLE	E DATA				
Wet Wt. sam	nple + ring or	r tare ·	151.98	g					
Tare or ring		i taro .	0.0	g		Before	e Test	After	Test
Wet Wt: of S			151.98	g	_	Tare No.:	8	Tare No.:	
Diameter:	1.40	in	3.56	cm ²	=	Wet Wt.+tare:	158.95	Wet Wt.+tare:	
Length:	2.81	in	7.13	cm	_	Dry Wt.+tare:	143.03	Dry Wt.+tare:	
Area:	1.54	in^2	9.96	cm ²		Tare Wt:	26.78	Tare Wt:	
Volume :	4.33	in^3	70.99	cm ³		Dry Wt.:	116.25	Dry Wt.:	1
Unit Wt.(wet):	133.60	pcf	2.14	g/cm ^{^3}		Water Wt.:	15.92	Water Wt.:	
Unit Wt.(dry):	117.51	pcf	1.88	g/cm ^{^3}		% moist.:	13.7	% moist.:	
Assumed S	pecific Gravity:	2.70	Max Dry D	ensity(pcf) =		OMC =		<u>-</u>	
Calculated %	saturation:		Void ı	% of max = atio (e) =	0.434	+/- OMC = Porosity (n)=	0.302	=	
Cell Pres	ssure (psi) =	T es 55.00		s During Hyessure (psi) =	50.00	Confining	Pressure =	5.00 active Confining	psi Pressure
Z ₁ (Mercury H	Jaiaht Diffara	ance @ t.)·	15.8	cm	Hydraulic (Gradient -	28.00		
Z ₁ (iviciculy i	leight Dillere	5110 0	13.0	-	Tiyuraulic C	Jiaulelli –	20.00		
Date	elapsed t	Z	DZp	temp	а	k	k		
	(seconds)	(pipet @ t)	(cm)	(deg C)	(temp corr)	(cm/sec)	(ft./day)	Reset = *	
8/9/2016		16.55	0.2652	21	0.977	9.81E-08	2.78E-04		
8/9/2016 8/9/2016		16.35 16.25	0.4652 0.5652	21 21	0.977 0.977	8.66E-08 7.04E-08	2.46E-04 2.00E-04		
8/9/2016		16.15	0.6652	21	0.977	6.24E-08	1.77E-04		
0/0/2010	1_00		0.0002		0.011	0.2 12 00		п	
				SUMM	IARY				
		ka =	7.94E-08	cm/sec	\/	Acceptance	criteria =	50	%
		ki k1 =	9.81E-08	cm/sec	Vm 23.6	%	Vm =	<u> ka-ki </u>	x 100
		k1 = k2 =	8.66E-08		9.1	% %	VIII =	ka-ki j	X 100
		k3 =	7.04E-08		11.3	%			
		k4 =	6.24E-08		21.4	%			
	Lludroulia -	ondustinite :	I.	7045.00	am/a = =	2.255.04	ft/dov:	1	
	Hydraulic c Void Ratio	onauctivity	k =		cm/sec	2.25E-04	π/day		
	Porosity		e = n =						
	Bulk Densit	tv	g=		g/cm ³	133.6	pcf		
	Water Conf	•	9 – W =		cm ³ /cm ³	(at 20 deg			
						, 9	,	ī	
	Intrinsic Pe	rmeability	$k_{int} =$	8.13E-13	cm ²	(at 20 deg	C)		

Project :	Oklaunion-	Ponds Area	Dikes						
Date:	8/18/2016			Pan	el Number :	P-1			
						rmometer Da	- ata		
Boring No.:	B-3		a _p =	0.031416	•	Set Mercury to Pipet Rp at	Equilibrium	1.6	cm ³
Sample:	ST-1		a _a =	0.767120	cm ²	beginning	Pipet Rp	16.9	cm ³
Depth (ft):	5.0-7.0		$M_1 =$	0.030180	C =	0.0017208	Annulus Ra	1.0	cm ³
Other Location:	Tube		$M_2 =$	1.040953	T =	0.0655602			
Material Des	cription:	Lean Clay							
				SAMPLE	DATA				
Wet Wt. sam	nple + ring o	r tare ·	157.28	g					
Tare or ring			0.0	_g		Before	e Test	After	Test
Wet Wt: of S		•	157.28	g	_	Tare No.:	61	Tare No.:	
Diameter :	1.40	in	3.56	cm ²		Wet Wt.+tare:	119.02	Wet Wt.+tare:	
Length:	2.81	in	7.15	cm	_	Dry Wt.+tare:	108.77	_Dry Wt.+tare:	
Area:	1.54	in^2	9.95	cm ²		Tare Wt:	33.64	_Tare Wt:	
Volume :	4.34	in^3	71.06	cm ³		Dry Wt.:	75.13	_Dry Wt.:	
Unit Wt.(wet):		pcf	2.21	g/cm ^{^3}		Water Wt.:	10.25	_Water Wt.:	
Unit Wt.(dry):	121.53	pcf	1.95	g/cm ^{^3}		% moist.:	13.6	_% moist.:	
Assumed S	specific Gravity:	2.70	Max Dry D	Density(pcf) =		OMC =		_	
Calculated %	saturation:		Void r	% of max = ratio (e) =	0.434	+/- OMC = Porosity (n)=	0.302	- -	
Cell Pres	ssure (psi) =	Tes 55.00		es During Hydessure (psi) = TEST REA	50.00	-	Pressure =	= 5.00 ective Confining	psi Pressure
Cell Pres		55.00		essure (psi) =	: 50.00 ADINGS	Confining	Pressure =		•
		55.00	Back Pro	essure (psi) =	: 50.00 ADINGS	Confining Note: The abov	Pressure = ve value is Effe		•
Z ₁ (Mercury F	Height Differe elapsed t (seconds)	55.00 ence @ t ₁): Z (pipet @ t)	Back Pro	TEST REACT cm temp (deg C)	E 50.00 ADINGS Hydraulic (a (temp corr)	Confining Note: The above Gradient = k (cm/sec)	Pressure = ye value is Effective 28.00 k (ft./day)	ective Confining Reset = *	•
Z ₁ (Mercury F	Height Difference elapsed to (seconds) 300	55.00 ence @ t ₁): Z (pipet @ t) 16.7	15.9 DZp (cm) 0.153157	ressure (psi) = TEST RE cm temp (deg C) 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977	Confining Note: The above Gradient = k (cm/sec) 5.65E-08	Pressure = //2e value is Effect 28.00 k (ft./day) 1.60E-04	Reset = *	•
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6	15.9 DZp (cm) 0.153157 0.253157	temp (deg C) 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977	Confining Note: The abov Gradient =	Pressure = /e value is Effe 28.00 k (ft./day) 1.60E-04 1.33E-04	Reset = *	•
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.55	15.9 DZp (cm) 0.153157 0.253157 0.303157	temp (deg C) 21 21 21	= 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977	Confining Note: The abov Gradient =	Pressure = 28.00 k (ft./day) 1.60E-04 1.33E-04	Reset = *	•
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6	15.9 DZp (cm) 0.153157 0.253157	temp (deg C) 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977	Confining Note: The abov Gradient =	Pressure = /e value is Effe 28.00 k (ft./day) 1.60E-04 1.33E-04	Reset = *	•
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.55	15.9 DZp (cm) 0.153157 0.253157 0.303157 0.403157	temp (deg C) 21 21 21 SUMM	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977	Confining Note: The abov Gradient =	Pressure = 28.00 k (ft./day) 1.60E-04 1.33E-04	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.55 16.45	15.9 DZp (cm) 0.153157 0.253157 0.303157	temp (deg C) 21 21 21 SUMM	E 50.00 ADINGS Hydraulic (a (temp corr)	Confining Note: The abov Gradient =	Pressure = ye value is Effective value val	Reset = *	•
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.55 16.45 ka = ki	15.9 DZp (cm) 0.153157 0.253157 0.303157 0.403157	temp (deg C) 21 21 21 21 SUMM cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm	Confining Note: The above Gradient =	Pressure = ye value is Effect 28.00	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.55 16.45 ka = ki k1 =	15.9 DZp (cm) 0.153157 0.253157 0.303157 0.403157 4.46E-08 5.65E-08	temp (deg C) 21 21 21 SUMM cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 26.7	Confining Note: The above Gradient = k (cm/sec) 5.65E-08 4.69E-08 3.75E-08 3.75E-08 Acceptance	Pressure = ye value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.55 16.45	15.9 DZp (cm) 0.153157 0.253157 0.303157 0.403157 4.46E-08 5.65E-08 4.69E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 26.7 5.1	Confining Note: The above Gradient = k (cm/sec) 5.65E-08 4.69E-08 3.75E-08 3.75E-08 Acceptance % %	Pressure = ye value is Effect 28.00	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.55 16.45 ka = ki k1 = k2 = k3 =	15.9 DZp (cm) 0.153157 0.253157 0.303157 0.403157 4.46E-08 5.65E-08 4.69E-08 3.75E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 26.7 5.1 16.0	Confining Note: The above Gradient =	Pressure = ye value is Effect 28.00	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 6 300 6 600 6 900 6 1200	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.55 16.45 ka = ki k1 = k2 = k3 = k4 =	15.9 DZp (cm) 0.153157 0.253157 0.303157 0.403157 4.46E-08 5.65E-08 4.69E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 26.7 5.1 16.0 15.9	Confining Note: The above Gradient =	Pressure = ye value is Effect	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 6 300 6 600 5 900 6 1200	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.55 16.45 ka = ki k1 = k2 = k3 =	15.9 DZp (cm) 0.153157 0.253157 0.303157 0.403157 4.46E-08 5.65E-08 4.69E-08 3.75E-08 3.75E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 4.46E-08	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 26.7 5.1 16.0	Confining Note: The above Gradient =	Pressure = ye value is Effect	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 5 900 6 1200 Hydraulic c Void Ratio	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.55 16.45 ka = ki k1 = k2 = k3 = k4 =	15.9 DZp (cm) 0.153157 0.253157 0.303157 0.403157 4.46E-08 5.65E-08 4.69E-08 3.75E-08 k = e =	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 26.7 5.1 16.0 15.9	Confining Note: The above Gradient =	Pressure = ye value is Effect	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 1200 Hydraulic c Void Ratio Porosity	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.55 16.45 ka = ki k1 = k2 = k3 = k4 = conductivity	15.9 DZp (cm) 0.153157 0.253157 0.303157 0.403157 4.46E-08 5.65E-08 4.69E-08 3.75E-08 3.75E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 4.46E-08	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 26.7 5.1 16.0 15.9 cm/sec	Confining Note: The above Gradient = k (cm/sec) 5.65E-08 4.69E-08 3.75E-08 3.75E-08 Acceptance % % % % % 1.26E-04	Pressure = ye value is Effect	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900 6 1200 Hydraulic c Void Ratio Porosity Bulk Densit	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.55 16.45	15.9 DZp (cm) 0.153157 0.253157 0.303157 0.403157 4.46E-08 5.65E-08 4.69E-08 3.75E-08 3.75E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 4.46E-08	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 26.7 5.1 16.0 15.9 cm/sec	Confining Note: The above Gradient = k (cm/sec) 5.65E-08 4.69E-08 3.75E-08 3.75E-08 Acceptance % % % % % 1.26E-04	Pressure = ye value is Effect	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 1200 Hydraulic c Void Ratio Porosity	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.55 16.45 ka = ki k1 = k2 = k3 = k4 = expected with the second continuity to the second continu	15.9 DZp (cm) 0.153157 0.253157 0.303157 0.403157 4.46E-08 5.65E-08 4.69E-08 3.75E-08 3.75E-08	temp (deg C) 21 21 21 21 21 SUMM cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 26.7 5.1 16.0 15.9 cm/sec	Confining Note: The above Gradient = k (cm/sec) 5.65E-08 4.69E-08 3.75E-08 3.75E-08 Acceptance % % % % % 1.26E-04	Pressure = ye value is Effect 28.00 k (ft./day) 1.60E-04 1.33E-04 1.06E-04 criteria = Vm = ft/day	Reset = *	Pressure

Project :	Oklaunion-	Ponds Area	Dikes						
Date:	8/18/2016	T OHOS / HCG	DIRCO	Pan	el Number :	D ₋ 1			
Project No. :				ran		ermometer Da	- oto		
Boring No.:	B-3		a _p =	0.031416		Set Mercury to	Equilibrium	1.6	cm ³
_	ST-2					Pipet Rp at beginning	Pipet Rp	16.9	cm ³
Sample:			a _a =				1		cm ³
Depth (ft):	12.0-14.0		$M_1 =$			0.0018401		1.0	cm
Other Location:	Tube		$M_2 =$	1.040953	T =	0.0654439			
Material Des	scription:	Lean Clay							
				SAMPLE	DATA				
Wet Wt. sam	nple + ring or	r tare ·	134.77	g					
Tare or ring		i taro .	0.0	_9 _g		Before	e Test	After	Test
Wet Wt: of S			134.77	g	_	Tare No.:	68	Tare No.:	
Diameter:	1.36	in	3.44	cm ²	="	Wet Wt.+tare:	165.58	Wet Wt.+tare:	
Length:	2.82	in	7.16	cm	_	Dry Wt.+tare:	144.88	Dry Wt.+tare:	
Area:	1.44	in^2	9.32	cm ²		Tare Wt:	30.82	_Tare Wt:	
Volume :	4.07	in^3	66.69	cm ³		Dry Wt.:	114.06	_Dry Wt.:	
Unit Wt.(wet):		pcf	2.02	g/cm ^{^3}		Water Wt.:	20.7	Water Wt.:	
Unit Wt.(dry):	106.73	pcf	1.71	g/cm ^{^3}		% moist.:	18.1	_% moist.:	
Assumed S	Specific Gravity:	2.70	Max Dry D	ensity(pcf) = % of max =		OMC = +/- OMC =		_	
Calculated %	saturation:		Void r	atio (e) =	0.565	Porosity (n)=	0.361	-	
			t Pressure	s During Hvo	draulic Con	ductivity Te	st		
Cell Pres	ssure (psi) =	55.00		essure (psi) =	50.00	-	Pressure =	5.00 ective Confining	psi Pressure
	. ,	55.00	Back Pro	essure (psi) =	50.00 ADINGS	Confining Note: The abov	Pressure = /e value is Effe		•
Cell Pres	. ,	55.00		essure (psi) =	50.00 ADINGS	Confining	Pressure =		•
Z ₁ (Mercury F	Height Differe	55.00 ence @ t ₁):	Back Pro	essure (psi) = TEST REA	50.00 ADINGS Hydraulic (Confining Note: The abov	Pressure = ye value is Effe		•
	Height Differe	55.00 ence @ t ₁):	Back Pro	TEST REACTOR temp	50.00 ADINGS	Confining Note: The above Gradient = k	Pressure = ye value is Effe		•
Z ₁ (Mercury F	Height Differe elapsed t (seconds)	55.00 ence @ t ₁):	Back Pro	essure (psi) = TEST REA	50.00 ADINGS Hydraulic (Confining Note: The abov	Pressure = ye value is Effe	ective Confining	•
Z ₁ (Mercury F	Height Difference elapsed to (seconds)	55.00 ence @ t ₁): Z (pipet @ t)	15.9 DZp (cm) 0.180269 0.280269	TEST REACT temp (deg C)	± 50.00 ADINGS Hydraulic (a (temp corr)	Confining Note: The above Gradient = k (cm/sec)	Pressure = //e value is Effect 28.00 k (ft./day) 2.02E-04 1.57E-04	ective Confining	•
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.5	15.9 DZp (cm) 0.180269 0.280269 0.380269	temp (deg C) 21 21 21	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977	Confining Note: The abov Gradient =	Pressure = /e value is Effe 28.00 k (ft./day) 2.02E-04 1.57E-04 1.43E-04	ective Confining	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6	15.9 DZp (cm) 0.180269 0.280269	temp (deg C) 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977	Confining Note: The abov Gradient =	Pressure = //e value is Effect 28.00 k (ft./day) 2.02E-04 1.57E-04	ective Confining	•
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.5	15.9 DZp (cm) 0.180269 0.280269 0.380269	temp (deg C) 21 21 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977	Confining Note: The abov Gradient =	Pressure = /e value is Effe 28.00 k (ft./day) 2.02E-04 1.57E-04 1.43E-04	ective Confining	•
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.5 16.4 Ka =	15.9 DZp (cm) 0.180269 0.280269 0.380269	temp (deg C) 21 21 21 SUMM	E 50.00 ADINGS Hydraulic (a (temp corr)	Confining Note: The abov Gradient =	Pressure = ye value is Effective value val	Reset = *	•
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.5 16.4 ka = ki	DZp (cm) 0.180269 0.280269 0.380269 0.480269	temp (deg C) 21 21 21 SUMM cm/sec	a (temp corr) 0.977 0.977 ARY	Confining Note: The above Gradient = k (cm/sec) 7.11E-08 5.55E-08 5.03E-08 4.78E-08	Pressure = ye value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.4 ka = ki k1 =	DZp (cm) 0.180269 0.280269 0.380269 0.480269 5.62E-08	temp (deg C) 21 21 21 SUMM cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 26.6	Confining Note: The above Gradient = k (cm/sec) 7.11E-08 5.55E-08 5.03E-08 4.78E-08 Acceptance	Pressure = ye value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.5 16.4 ka = ki k1 = k2 =	DZp (cm) 0.180269 0.280269 0.480269 5.62E-08 7.11E-08 5.55E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec	a (temp corr) 0.977 0.977 0.977 ARY Vm 26.6 1.3	Confining Note: The above Gradient = k (cm/sec) 7.11E-08 5.55E-08 5.03E-08 4.78E-08 Acceptance % %	Pressure = ye value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.5 16.4 ka = ki k1 = k2 = k3 =	DZp (cm) 0.180269 0.280269 0.380269 0.480269 5.62E-08 7.11E-08 5.55E-08 5.03E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 26.6 1.3 10.4	Confining Note: The above Gradient = k (cm/sec) 7.11E-08 5.55E-08 5.03E-08 4.78E-08 Acceptance % % %	Pressure = ye value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.5 16.4 ka = ki k1 = k2 =	DZp (cm) 0.180269 0.280269 0.480269 5.62E-08 7.11E-08 5.55E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec	a (temp corr) 0.977 0.977 0.977 ARY Vm 26.6 1.3	Confining Note: The above Gradient = k (cm/sec) 7.11E-08 5.55E-08 5.03E-08 4.78E-08 Acceptance % %	Pressure = ye value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.5 16.4 ka = ki k1 = k2 = k3 = k4 =	DZp (cm) 0.180269 0.280269 0.380269 0.480269 5.62E-08 7.11E-08 5.55E-08 5.03E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 26.6 1.3 10.4	Confining Note: The above Gradient = k (cm/sec) 7.11E-08 5.55E-08 5.03E-08 4.78E-08 Acceptance % % %	Pressure = //e value is Effe 28.00	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 6 300 6 600 7 1200 8 1200 8 Hydraulic c Void Ratio	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.5 16.4 ka = ki k1 = k2 = k3 = k4 =	15.9 DZp (cm) 0.180269 0.280269 0.380269 0.480269 5.62E-08 7.11E-08 5.55E-08 5.03E-08 4.78E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 5.62E-08	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 26.6 1.3 10.4 14.9	Confining Note: The above Gradient = k (cm/sec) 7.11E-08 5.55E-08 5.03E-08 4.78E-08 Acceptance % % % %	Pressure = //e value is Effe 28.00	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 700 700 700 700 700 700 700 700 7	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.5 16.4 ka = ki k1 = k2 = k3 = k4 = conductivity	15.9 DZp (cm) 0.180269 0.280269 0.380269 0.480269 5.62E-08 7.11E-08 5.55E-08 5.03E-08 4.78E-08 k = e = n =	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec 5.62E-08	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 26.6 1.3 10.4 14.9 cm/sec	Confining Note: The above Gradient = k (cm/sec) 7.11E-08 5.55E-08 5.03E-08 4.78E-08 Acceptance % % % % % 1.59E-04	Pressure = //e value is Effe 28.00	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 1200 Hydraulic c Void Ratio Porosity Bulk Densit	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.5 16.4 ka = ki k1 = k2 = k3 = k4 = conductivity	15.9 DZp (cm) 0.180269 0.280269 0.380269 0.480269 5.62E-08 7.11E-08 5.55E-08 5.03E-08 4.78E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 5.62E-08	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 26.6 1.3 10.4 14.9 cm/sec g/cm³	Confining Note: The above Gradient = k (cm/sec) 7.11E-08 5.55E-08 5.03E-08 4.78E-08 Acceptance % % % % % 1.59E-04	Pressure = //e value is Effe 28.00	Reset = *	Pressure
Z ₁ (Mercury Final Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 700 700 700 700 700 700 700 700 7	55.00 ence @ t ₁): Z (pipet @ t) 16.7 16.6 16.5 16.4 ka = ki k1 = k2 = k3 = k4 = expected with the second continuity to the second continuit	15.9 DZp (cm) 0.180269 0.280269 0.380269 0.480269 5.62E-08 7.11E-08 5.55E-08 5.03E-08 4.78E-08 k = e = n =	temp (deg C) 21 21 21 21 21 SUMM cm/sec	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 26.6 1.3 10.4 14.9 cm/sec	Confining Note: The above Gradient = k (cm/sec) 7.11E-08 5.55E-08 5.03E-08 4.78E-08 Acceptance % % % % % 1.59E-04	Pressure = //e value is Effe 28.00	Reset = *	Pressure

Project :	Oklaunion-	Ponds Area	Dikes						
Date:	8/18/2016			Pan	el Number :	P-1			
Project No. :	N4165227		•			rmometer Da	- ata		
Boring No.:	B-4		a _p =	0.031416		Set Mercury to Pipet Rp at	Equilibrium	1.6	cm ³
Sample:	ST-2		a _a =	0.767120	cm ²	beginning	Pipet Rp	16.9	cm ³
Depth (ft):	8.5-10.5		$M_1 =$	0.030180) C =	0.0017587	Annulus Ra	1.0	cm ³
Other Location:	Tube		$M_2 =$	1.040953	3 T =	0.0651664			
Material Des	cription:	Lean Clay							
				SAMPLE	E DATA				
Wet Wt. sam	nple + ring o	r tare ·	144.07	g					
Tare or ring		i taro .	0.0	_9 _9		Before	e Test	After	Test
Wet Wt: of S			144.07	g	_	Tare No.:	145	Tare No.:	
Diameter:	1.39	in	3.53	cm ²	_	Wet Wt.+tare:	171.49	Wet Wt.+tare:	
Length:	2.83	in	7.19	cm	_	Dry Wt.+tare:	151.53	Dry Wt.+tare:	
Area:	1.52	in^2	9.79	cm ²		Tare Wt:	30.20	Tare Wt:	1
Volume :	4.29	in^3	70.37	cm ³		Dry Wt.:	121.33	_Dry Wt.:	1
Unit Wt.(wet):	127.75	pcf	2.05	g/cm ^{^3}		Water Wt.:	19.96	Water Wt.:	
Unit Wt.(dry):	109.70	pcf	1.76	g/cm ^{^3}		% moist.:	16.5	% moist.:	
Assumed S	pecific Gravity:	2.70	Max Dry D	Density(pcf) =		OMC =		_	
Calculated %	saturation:		Void ı	% of max = atio (e) =	0.513	+/- OMC = Porosity (n)=	0.339	-	
Cell Pres	ssure (psi) =	Tes 55.00		es During Hye essure (psi) =	50.00	Confining	Pressure =	5.00 ective Confining	psi Pressure
7 (14	1 : 1 · D'''	0 ()	40.0	TEST RE		- II .	22.22		
Z ₁ (Mercury F	Height Differe	ence @ t ₁):	16.0	-cm	Hydraulic (- radient	28.00		
Date	elapsed t	Z	DZp	temp	а	k	k		
- /- / /	(seconds)	(pipet @ t)	(cm)	(deg C)	(temp corr)	(cm/sec)	(ft./day)	_ Reset = *	
8/9/2016		16.6	0.345337	21	0.977	1.30E-07	3.69E-04		
8/9/2016 8/9/2016		16.45 16.35	0.495337 0.595337	21 21	0.977 0.977	9.39E-08 7.55E-08	2.66E-04 2.14E-04		
8/9/2016		16.25	0.695337	21	0.977	6.64E-08	1.88E-04	"	
5/5/2515				SUMM					
		ka =	9.15E-08		IAN I	Acceptance	critorio –	50	%
		ki	9.13L-00	CITI/SEC	Vm	Acceptance	Ciliena –	30	70
		k1 =	1.30E-07	cm/sec	42.4	%	Vm =	<u> ka-ki </u>	x 100
		k2 =	9.39E-08		2.6	%		ka	
		k3 =	7.55E-08		17.5	%			
		k4 =	6.64E-08	cm/sec	27.5	%			
	Hydraulic c	onductivity	k =	9.15E-08	cm/sec	2.59E-04	ft/day	1	
	Void Ratio	o. Iddolivity	e =		311,7000	2.002 04	, aay		
	Porosity		n =						
	Bulk Densit	ty	g=		g/cm ³	127.7	pcf		
		•					•	Ī	
	Water Con	tent	W =	0.29	cm ³ /cm ³	(at 20 deg	C)		
	Water Con Intrinsic Pe		VV = k_{int} =		cm³/cm³ cm²	(at 20 deg (at 20 deg			

HYDRAULIC CONDUCTIVITY DETERMINATION FLEXIBLE WALL PERMEAMETER - CONSTANT VOLUME (Mercury Permometer Test)

Project :	Oklaunion- I	Ponds Area	Dikes						
Date:	8/18/2016			Pan	el Number :	P-1			
						ermometer Da	- ata		
Boring No.:	B-5		a _p =	0.031416	•	Set Mercury to Pipet Rp at	Equilibrium	1.6	cm ³
Sample:	ST-1		a _a =	0.767120	cm ²	beginning	Pipet Rp	23.4	cm ³
Depth (ft):	5.0-7.0		$M_1 =$	0.030180) C =	0.0013341	Annulus Ra	0.7	cm ³
Other Location:	Tube		$M_2 =$	1.040953	3 T =	0.0459673		<u> </u>	
Material Des	cription: I	Lean Clay							
				SAMPLE	E DATA				
\/\at \/\t aam	anla i ring ar	toro :	207.02						
Tare or ring	nple + ring or	lare.	397.92 0.0	_g _g		Before	- Test	After	Test
Wet Wt: of S		•	397.92	.9 g		Tare No.:	25	Tare No.:	1030
Diameter :	٠	in	4.83	cm ²	_	Wet Wt.+tare:	208.83	Wet Wt.+tare:	
Length:		in	10.19	cm		Dry Wt.+tare:	183.15	Dry Wt.+tare:	
Area:		in^2	18.30	cm ²	_	Tare Wt:	32.90	Tare Wt:	
Volume :		in^3	186.44	cm ³		Dry Wt.:	150.25	Dry Wt.:	
Unit Wt.(wet):		pcf	2.13	g/cm ^{^3}		Water Wt.:	25.68	Water Wt.:	
Unit Wt.(wct):		pcf	1.82	g/cm ^{^3}		% moist.:	17.1	% moist.:	
Offic vvt.(dry).	113.74	pci	1.02	_g/CIII		/0 IIIOISt	17.1	_ /6 1110131	
Assumed S	pecific Gravity:	2.70	Max Dry D	ensity(pcf) = % of max =		OMC = +/- OMC =		-	
Calculated %	saturation:		Void r	atio (e) =	0.474	Porosity (n)=	0.322	_	
Cell Pres	ssure (psi) =	Tes 55.00		essure (psi) =	50.00	-	Pressure =	5.00 ective Confining	psi Pressure
7 / 1 1	1 : 1 · D:"	@ ()	00.0	TEST RE		0 11 1	00.00		
∠ ₁ (Mercury F	Height Differe	nce @ t ₁):	22.6	cm	Hydraulic	Gradient =	28.00		
Date	elapsed t	Z	DZp	temp	а	k	k		
		(pipet @ t)	(cm)	(deg C)	(temp corr)		(ft./day)	_ Reset = *	
8/9/2016		22.85	0.504592	21	0.977	1.02E-07	2.89E-04		
8/9/2016		22.6	0.754592	21	0.977	7.67E-08	2.17E-04		
8/9/2016		22.45	0.904592	21	0.977	6.15E-08	1.74E-04	ш	
8/9/2016	1200	22.35	1.004592	21	0.977	5.13E-08	1.46E-04	ш	
				SUMM	IARY				
		k a =	7.29E-08	cm/sec		Acceptance	criteria =	50	%
		ki	4 005 05		Vm	0/		11	400
		k1 =	1.02E-07		39.9	%	Vm =		x 100
		k2 =	7.67E-08		5.2	%		ka	
		k3 =	6.15E-08		15.6	%			
		k4 =	5.13E-08	cm/sec	29.5	%			
	Hydraulic co	onductivity	k =	7.29E-08	cm/sec	2.07E-04	ft/day		
	Void Ratio		e =						
	Porosity		n =						
	Bulk Density		g=		g/cm ³	133.2	pcf		
	Water Conte	ent	W =	0.31	cm ³ /cm ³	(at 20 deg	C)		
	Intrinsic Per	meability	$k_{int} =$	7.46E-13	cm ²	(at 20 deg	C)		
								_	

Project :	Oklaunion-	Ponds Area	Dikes						
Date:	8/18/2016			Pan	el Number :	P-1			
Project No. :			•			rmometer Da	- ata		
Boring No.:	B-5		a _p =	0.031416	cm ²	Set Mercury to Pipet Rp at	Equilibrium	1.6	cm ³
Sample:	ST-2		a _a =	0.767120	cm ²	beginning	Pipet Rp	16.7	cm ³
Depth (ft):	12.0-14.0		$M_1 =$	0.030180	C =	0.0018021	Annulus Ra	1.0	cm ³
Other Location:	Tube		$M_2 =$	1.040953	T =	0.066434			
Material Des	cription:	Lean Clay							
				SAMPLE	DATA				
Wet Wt. sam	nple + ring or	r tare :	141.62	g					
Tare or ring			0.0	_g		Before	e Test	After	Test
Wet Wt: of S	Sample :		141.62	g	_	Tare No.:	46	Tare No.:	
Diameter:	1.36	in	3.45	cm ²	_	Wet Wt.+tare:	151.10	Wet Wt.+tare:	
Length:	2.78	in	7.05	cm	_	Dry Wt.+tare:	133.71	Dry Wt.+tare:	
Area:		in^2	9.37	cm ²		Tare Wt:	26.77	Tare Wt:	
Volume :		in^3	66.08	cm ³		Dry Wt.:	106.94	_Dry Wt.:	
Unit Wt.(wet):		pcf	2.14	g/cm ^{^3}		Water Wt.:	17.39	Water Wt.:	
Unit Wt.(dry):	115.02	pcf	1.84	g/cm ^{^3}		% moist.:	16.3	_% moist.:	
Assumed S	specific Gravity:	2.70	Max Dry D	ensity(pcf) = % of max =		OMC = +/- OMC =		_	
Calculated %	saturation:		Void r	atio (e) =	0.474	Porosity (n)=	0.322	-	
		Taa	4 Dragaile	a During Use	draulia Can	ductivity To	-4		
Cell Pres	ssure (psi) =	Tes 55.00		es During Hydessure (psi) =	50.00	Confining	Pressure =	5.00 ective Confining	psi Pressure
Cell Pres	· ,	55.00		essure (psi) =	50.00	Confining Note: The abov	Pressure =		•
	· ,	55.00	Back Pro	essure (psi) =	50.00 ADINGS	Confining Note: The abov	Pressure =		•
Z ₁ (Mercury F	Height Differe	55.00 ence @ t ₁):	Back Pro	essure (psi) = TEST REA	50.00 ADINGS Hydraulic (Confining Note: The abov Gradient =	Pressure = ve value is Effe 28.00		•
Z ₁ (Mercury F Date 8/9/2016	Height Difference elapsed to (seconds)	55.00 ence @ t ₁): Z (pipet @ t) 16.55	15.7 DZp (cm) 0.102529	temp (deg C) 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977	Confining Note: The abov Gradient = k (cm/sec) 4.01E-08	Pressure = 28.00 k (ft./day) 1.14E-04	ective Confining	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45	15.7 DZp (cm) 0.102529 0.202529	temp (deg C) 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 4.01E-08 3.97E-08	Pressure = 28.00 k (ft./day) 1.14E-04 1.13E-04	ective Confining	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 900	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.4	15.7 DZp (cm) 0.102529 0.202529 0.252529	temp (deg C) 21 21 21	= 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977	Confining Note: The abov Gradient =	Pressure = 28.00 k (ft./day) 1.14E-04 1.13E-04 9.38E-05	ective Confining	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 900	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45	15.7 DZp (cm) 0.102529 0.202529	temp (deg C) 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 4.01E-08 3.97E-08	Pressure = 28.00 k (ft./day) 1.14E-04 1.13E-04	ective Confining	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 900	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.4	15.7 DZp (cm) 0.102529 0.202529 0.252529	temp (deg C) 21 21 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977	Confining Note: The abov Gradient =	Pressure = 28.00 k (ft./day) 1.14E-04 1.13E-04 9.38E-05	ective Confining	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 900	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.4 16.3	15.7 DZp (cm) 0.102529 0.202529 0.252529	temp (deg C) 21 21 21 SUMM	a (temp corr) 0.977 0.977 ARY	Confining Note: The abov Gradient =	Pressure = re value is Effe 28.00 k (ft./day) 1.14E-04 1.13E-04 9.38E-05 9.85E-05	Reset = *	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 900	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.4 16.3 ka = ki	15.7 DZp (cm) 0.102529 0.202529 0.252529 0.352529	temp (deg C) 21 21 21 SUMM cm/sec	a (temp corr) 0.977 0.977 0.977 ARY	Confining Note: The abov Gradient =	Pressure = re value is Effe 28.00 k (ft./day) 1.14E-04 1.13E-04 9.38E-05 9.85E-05	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 900	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.4 16.3 ka = ki k1 =	15.7 DZp (cm) 0.102529 0.202529 0.252529 0.352529 3.69E-08	temp (deg C) 21 21 21 SUMM cm/sec cm/sec	a (temp corr) 0.977 0.977 0.977 ARY	Confining Note: The abov Gradient = k (cm/sec) 4.01E-08 3.97E-08 3.31E-08 3.48E-08 Acceptance	Pressure = re value is Effe 28.00 k (ft./day) 1.14E-04 1.13E-04 9.38E-05 9.85E-05	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 900	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.4 16.3 ka = ki k1 = k2 =	15.7 DZp (cm) 0.102529 0.202529 0.252529 0.352529 3.69E-08 4.01E-08 3.97E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec	a (temp corr) 0.977 0.977 0.977 ARY	Confining Note: The abov Gradient = k (cm/sec) 4.01E-08 3.97E-08 3.31E-08 3.48E-08 Acceptance % %	Pressure = re value is Effe 28.00 k (ft./day) 1.14E-04 1.13E-04 9.38E-05 9.85E-05	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 900	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.4 16.3 ka = ki k1 =	15.7 DZp (cm) 0.102529 0.202529 0.252529 0.352529 3.69E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec	a (temp corr) 0.977 0.977 0.977 ARY	Confining Note: The abov Gradient = k (cm/sec) 4.01E-08 3.97E-08 3.31E-08 3.48E-08 Acceptance	Pressure = re value is Effe 28.00 k (ft./day) 1.14E-04 1.13E-04 9.38E-05 9.85E-05	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 6 900 6 1200	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.3 ka = ki k1 = k2 = k3 = k4 =	15.7 DZp (cm) 0.102529 0.202529 0.252529 0.352529 3.69E-08 4.01E-08 3.97E-08 3.31E-08 3.48E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec	** 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 8.6 7.6 10.4 5.9	Confining Note: The abov Gradient =	Pressure = re value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 5 900 1200	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.3 ka = ki k1 = k2 = k3 = k4 =	15.7 DZp (cm) 0.102529 0.202529 0.252529 0.352529 3.69E-08 4.01E-08 3.97E-08 3.31E-08 3.48E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 3.69E-08	a (temp corr) 0.977 0.977 0.977 ARY Vm 8.6 7.6 10.4	Confining Note: The abov Gradient = k (cm/sec) 4.01E-08 3.97E-08 3.31E-08 3.48E-08 Acceptance % % %	Pressure = re value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900 1200 Hydraulic c Void Ratio	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.3 ka = ki k1 = k2 = k3 = k4 =	15.7 DZp (cm) 0.102529 0.202529 0.252529 0.352529 3.69E-08 4.01E-08 3.97E-08 3.31E-08 3.48E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec 3.69E-08	** 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 8.6 7.6 10.4 5.9	Confining Note: The abov Gradient =	Pressure = re value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 1200 Hydraulic c Void Ratio Porosity	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.4 16.3 ka = ki k1 = k2 = k3 = k4 = enconductivity	15.7 DZp (cm) 0.102529 0.202529 0.252529 0.352529 3.69E-08 4.01E-08 3.97E-08 3.31E-08 3.48E-08 k = e = n =	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 3.69E-08	* 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 8.6 7.6 10.4 5.9 cm/sec	Confining Note: The abov Gradient = k (cm/sec) 4.01E-08 3.97E-08 3.31E-08 3.48E-08 Acceptance % % % % 1.05E-04	Pressure = re value is Effect 28.00	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900 1200 Hydraulic c Void Ratio Porosity Bulk Densit	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.4 16.3 ka = ki k1 = k2 = k3 = k4 = conductivity	15.7 DZp (cm) 0.102529 0.202529 0.252529 0.352529 3.69E-08 4.01E-08 3.97E-08 3.31E-08 3.48E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 3.69E-08	* 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 8.6 7.6 10.4 5.9 cm/sec	Confining Note: The abov Gradient = k (cm/sec) 4.01E-08 3.97E-08 3.31E-08 3.48E-08 Acceptance % % % % % 1.05E-04	Pressure = re value is Effect 28.00	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 1200 Hydraulic c Void Ratio Porosity	55.00 ence @ t ₁): Z (pipet @ t) 16.55 16.45 16.4 16.3 ka = ki k1 = k2 = k3 = k4 = enconductivity	15.7 DZp (cm) 0.102529 0.202529 0.252529 0.352529 3.69E-08 4.01E-08 3.97E-08 3.31E-08 3.48E-08 k = e = n =	temp (deg C) 21 21 21 21 SUMM cm/sec	* 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 8.6 7.6 10.4 5.9 cm/sec	Confining Note: The abov Gradient = k (cm/sec) 4.01E-08 3.97E-08 3.31E-08 3.48E-08 Acceptance % % % % 1.05E-04	Pressure = re value is Effect 28.00	Reset = *	Pressure

Project :	Omadinon	Ponds Area	DIKES						
Date:	8/18/2016			Pan	el Number :	P-1			
Project No. :	N4165227					rmometer Da	- ata		
Boring No.:	B-6		a _p =	0.031416		Set Mercury to Pipet Rp at	Equilibrium	1.6	cm ³
Sample:	ST-1		a _a =	0.767120	cm ²	beginning	Pipet Rp	23.2	cm ³
Depth (ft):	5.0-7.0		$M_1 =$	0.030180	C =	0.0013175	Annulus Ra	0.7	cm ³
Other Location:	Tube		$M_2 =$	1.040953	T =	0.0463602			
Material Des	cription:	Lean Clay							
				SAMPLE	DATA				
Wet Wt. sam	nnle + ring o	r tare ·	399.86	a					
Tare or ring		i taro .	0.0	_g _g		Before	e Test	After	Test
Wet Wt: of S			399.86	g		Tare No.:	53	Tare No.:	
Diameter:	1.90	in	4.84	cm ²	_	Wet Wt.+tare:	147.39	Wet Wt.+tare:	1
Length:	3.98	in	10.10	cm	_	Dry Wt.+tare:	131.11	Dry Wt.+tare:	
Area:	2.85	in^2	18.37	cm ²	_	Tare Wt:	32.99	Tare Wt:	
Volume :	11.33	in^3	185.61	cm ³		Dry Wt.:	98.12	Dry Wt.:	
Unit Wt.(wet):	134.43	pcf	2.15	g/cm ^{^3}		Water Wt.:	16.28	_Water Wt.:	
Unit Wt.(dry):	115.30	pcf	1.85	g/cm ^{^3}		% moist.:	16.6	% moist.:	
Assumed S	pecific Gravity:	2.70	Max Dry D	Density(pcf) =		OMC =		_	
Calculated %	saturation:		Void r	% of max = atio (e) =	0.462	+/- OMC = Porosity (n)=	0.316	-	
Calculated 70	Saturation.		Volu	allo (c) =	0.402	1 0103ity (11)=	0.010	-	
		Tes	t Pressure	e During Hy			_		
Cell Pres				s Durning riye	draulic Con	ductivity re	st		
00111100	ssure (psi) =	55.00		essure (psi) =		-	st Pressure =	5.00	psi
Contro	ssure (psi) =			essure (psi) =	50.00	Confining	Pressure =	5.00 ective Confining	•
	. ,	55.00	Back Pro	essure (psi) =	50.00 ADINGS	Confining Note: The abov	Pressure =		•
Z ₁ (Mercury F	. ,	55.00		essure (psi) =	50.00	Confining Note: The abov	Pressure =		•
Z ₁ (Mercury F	Height Differe	55.00 ence @ t ₁):	Back Pro	essure (psi) = TEST REA	50.00 ADINGS Hydraulic (Confining Note: The above	Pressure = ye value is Effe		•
	Height Differe	55.00 ence @ t ₁):	Back Pro	TEST REACT temp	50.00 ADINGS Hydraulic (Confining Note: The abov Gradient = k	Pressure = ye value is Effe	ective Confining	•
Z ₁ (Mercury F	Height Differe elapsed t (seconds)	55.00 ence @ t ₁):	Back Pro	essure (psi) = TEST REA	50.00 ADINGS Hydraulic (Confining Note: The above	Pressure = ye value is Effe		•
Z ₁ (Mercury F	elapsed t (seconds) 300	55.00 ence @ t ₁): Z (pipet @ t)	Back Pro	TEST REACT temp (deg C)	E 50.00 ADINGS Hydraulic (a (temp corr)	Confining Note: The above Gradient = k (cm/sec)	Pressure = /e value is Effe 28.00 k (ft./day)	ective Confining	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 23 22.9 22.8	22.5 DZp (cm) 0.170231 0.270231 0.370231	temp (deg C) 21 21 21	= 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977	Confining Note: The above Gradient =	Pressure = //2e value is Effective value v	ective Confining	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 23 22.9	22.5 DZp (cm) 0.170231 0.270231	temp (deg C) 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977	Confining Note: The above Gradient = k (cm/sec) 3.40E-08 2.70E-08	Pressure = //2e value is Effective 28.00 k (ft./day) 9.63E-05 7.66E-05	ective Confining	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 23 22.9 22.8	22.5 DZp (cm) 0.170231 0.270231 0.370231	temp (deg C) 21 21 21	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977	Confining Note: The above Gradient =	Pressure = //2e value is Effective value v	ective Confining	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 23 22.9 22.8 22.7	22.5 DZp (cm) 0.170231 0.270231 0.370231	temp (deg C) 21 21 21 SUMM	a (temp corr) 0.977 0.977 ARY	Confining Note: The above Gradient =	Pressure = /e value is Effe 28.00 k (ft./day) 9.63E-05 7.66E-05 7.02E-05	Reset = *	•
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 23 22.9 22.8 22.7 ka = ki	22.5 DZp (cm) 0.170231 0.270231 0.370231 0.470231	temp (deg C) 21 21 21 SUMM cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm	Confining Note: The above Gradient = k (cm/sec) 3.40E-08 2.70E-08 2.48E-08 2.36E-08 Acceptance	Pressure = 28.00 k (ft./day) 9.63E-05 7.02E-05 6.70E-05 criteria =	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 23 22.9 22.8 22.7 ka = ki k1 =	22.5 DZp (cm) 0.170231 0.270231 0.370231 0.470231 2.74E-08	temp (deg C) 21 21 21 SUMM cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 24.2	Confining Note: The above Gradient = k (cm/sec) 3.40E-08 2.70E-08 2.48E-08 2.36E-08 Acceptance	Pressure = /e value is Effe 28.00 k (ft./day) 9.63E-05 7.66E-05 7.02E-05	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 23 22.9 22.8 22.7 ka = ki k1 = k2 =	22.5 DZp (cm) 0.170231 0.270231 0.370231 0.470231 2.74E-08 3.40E-08 2.70E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec	a (temp corr) 0.977 0.977 0.977 ARY	Confining Note: The above Gradient = k (cm/sec) 3.40E-08 2.70E-08 2.48E-08 2.36E-08 Acceptance	Pressure = 28.00 k (ft./day) 9.63E-05 7.02E-05 6.70E-05 criteria =	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 23 22.9 22.8 22.7 ka = ki k1 = k2 = k3 =	22.5 DZp (cm) 0.170231 0.270231 0.370231 0.470231 2.74E-08 3.40E-08 2.70E-08 2.48E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 24.2 1.2 9.5	Confining Note: The above Gradient = k (cm/sec) 3.40E-08 2.70E-08 2.48E-08 2.36E-08 Acceptance % % %	Pressure = 28.00 k (ft./day) 9.63E-05 7.02E-05 6.70E-05 criteria =	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	55.00 ence @ t ₁): Z (pipet @ t) 23 22.9 22.8 22.7 ka = ki k1 = k2 =	22.5 DZp (cm) 0.170231 0.270231 0.370231 0.470231 2.74E-08 3.40E-08 2.70E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec	a (temp corr) 0.977 0.977 0.977 ARY	Confining Note: The above Gradient = k (cm/sec) 3.40E-08 2.70E-08 2.48E-08 2.36E-08 Acceptance	Pressure = 28.00 k (ft./day) 9.63E-05 7.02E-05 6.70E-05 criteria =	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 6 600 900 5 1200	55.00 ence @ t ₁): Z (pipet @ t) 23 22.9 22.8 22.7 ka = ki k1 = k2 = k3 =	22.5 DZp (cm) 0.170231 0.270231 0.370231 0.470231 2.74E-08 3.40E-08 2.70E-08 2.48E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec	E 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 24.2 1.2 9.5	Confining Note: The above Gradient = k (cm/sec) 3.40E-08 2.70E-08 2.48E-08 2.36E-08 Acceptance % % %	Pressure = // 28.00 k (ft./day) 9.63E-05 7.66E-05 7.02E-05 6.70E-05 criteria = Vm =	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900 1200 Hydraulic c	55.00 ence @ t ₁): Z (pipet @ t) 23 22.9 22.8 22.7 ka = ki k1 = k2 = k3 = k4 =	22.5 DZp (cm) 0.170231 0.270231 0.370231 0.470231 2.74E-08 3.40E-08 2.70E-08 2.48E-08 2.36E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 2.74E-08	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 24.2 1.2 9.5 13.6	Confining Note: The above Gradient = k (cm/sec) 3.40E-08 2.70E-08 2.48E-08 2.36E-08 Acceptance % % % %	Pressure = // 28.00 k (ft./day) 9.63E-05 7.66E-05 7.02E-05 6.70E-05 criteria = Vm =	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900 1200	55.00 ence @ t ₁): Z (pipet @ t) 23 22.9 22.8 22.7 ka = ki k1 = k2 = k3 = k4 =	22.5 DZp (cm) 0.170231 0.270231 0.370231 0.470231 2.74E-08 3.40E-08 2.70E-08 2.48E-08 2.36E-08	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 2.74E-08	* 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 24.2 1.2 9.5 13.6 cm/sec	Confining Note: The above Gradient = k (cm/sec) 3.40E-08 2.70E-08 2.48E-08 2.36E-08 Acceptance % % % %	Pressure = // 28.00 k (ft./day) 9.63E-05 7.66E-05 7.02E-05 6.70E-05 criteria = Vm =	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900 1200 Hydraulic c Void Ratio Porosity Bulk Densit	55.00 ence @ t ₁): Z (pipet @ t) 23 22.9 22.8 22.7 Ka = ki k1 = k2 = k3 = k4 = conductivity	22.5 DZp (cm) 0.170231 0.270231 0.370231 0.470231 2.74E-08 3.40E-08 2.70E-08 2.48E-08 2.36E-08 k = e = n = g =	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 2.74E-08	* 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 24.2 1.2 9.5 13.6 cm/sec	Confining Note: The above Gradient = k (cm/sec) 3.40E-08 2.70E-08 2.48E-08 2.36E-08 Acceptance % % % % 7.75E-05	Pressure = //2 value is Effe 28.00	Reset = *	Pressure
Z ₁ (Mercury F Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900 1200 Hydraulic c Void Ratio Porosity	55.00 ence @ t ₁): Z (pipet @ t) 23 22.9 22.8 22.7 ka = ki k1 = k2 = k3 = k4 = econductivity	22.5 DZp (cm) 0.170231 0.270231 0.370231 0.470231 2.74E-08 3.40E-08 2.70E-08 2.48E-08 2.36E-08 k = e = n =	temp (deg C) 21 21 21 21 SUMM cm/sec	* 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 24.2 1.2 9.5 13.6 cm/sec	Confining Note: The above Gradient = k (cm/sec) 3.40E-08 2.70E-08 2.48E-08 2.36E-08 Acceptance % % % % 7.75E-05	Pressure = //2 value is Effe 28.00	Reset = *	Pressure

Project :	Oklaunion-	Ponds Area	Dikes						
Date:	8/18/2016			Pan	el Number :	P-1			
Project No. :	N4165227				Pe	rmometer Da	nta		
Boring No.:	B-6		a _p =	0.031416	cm ²	Set Mercury to Pipet Rp at	Equilibrium	1.6	cm ³
Sample:	ST-2		a _a =	0.767120	cm ²	beginning	Pipet Rp	23.3	cm ³
Depth (ft):	12.0-14.0		$M_1 =$	0.030180	C =	0.001241	Annulus Ra	0.7	cm ³
Other Location:	Tube		$M_2 =$	1.040953	T =	0.0460707			
Material Des	cription :	Lean Clay							
				SAMPLE	DATA				
Wet Wt. sam	nple + ring o	r tare :	421.87	g					
Tare or ring			0.0	_g		Before	e Test	After	Test
Wet Wt: of S	Sample :		421.87	g	_	Tare No.:	34	Tare No.:	
Diameter:	1.97	in	5.00	cm ²		Wet Wt.+tare:	181.51	Wet Wt.+tare:	
Length:	4.00	in	10.17	cm	_	Dry Wt.+tare:	162.56	Dry Wt.+tare:	
Area:	3.04	in^2	19.62	cm ²		Tare Wt:	26.59	Tare Wt:	
Volume :	12.18	in^3	199.54	cm ³ g/cm ^{^3}		Dry Wt.:	135.97	Dry Wt.:	
Unit Wt.(wet):	131.93 115.79	pcf pcf	2.11 1.86	g/cm ^{^3}		Water Wt.: % moist.:	18.95 13.9	Water Wt.: % moist.:	
Unit Wt.(dry):	113.73	pci	1.00	g/cm		/0 1110151	13.3	_ /0 IIIOISt	
Assumed S	pecific Gravity:	2.70	Max Dry D	Density(pcf) =		OMC = +/- OMC =		=	
Calculated %	saturation:		Void ı	% of max = ratio (e) =	0.445	Porosity (n)=	0.308	<u>-</u>	
Cell Pres	ssure (psi) =	Tes 55.00		es During Hyd essure (psi) =		Confining	Pressure =		psi
7 () 4				TEST REA	ADINGS	Note: The abov	e value is Life	ctive Confining	Pressure
Z ₁ (Mercury F	leight Differe	ence @ t ₁):	22.6	cm	ADINGS Hydraulic (28.00	ctive Confining	Pressure
Z ₁ (Mercury F	leight Differe	ence @ t ₁):	22.6 DZp					ctive Confining	Pressure
_	_			cm	Hydraulic (Gradient =	28.00	ctive Confining	Pressure
Date 8/9/2016	elapsed t (seconds)	Z (pipet @ t) 22.25	DZp (cm) 1.05579	temp (deg C) 21	Hydraulic (a (temp corr) 0.977	Gradient =	28.00 k (ft./day) 5.71E-04		Pressure
Date 8/9/2016 8/9/2016	elapsed t (seconds) 300 600	Z (pipet @ t) 22.25 21.75	DZp (cm) 1.05579 1.55579	temp (deg C) 21 21	a (temp corr) 0.977 0.977	Fradient = k (cm/sec) 2.01E-07 1.50E-07	28.00 k (ft./day) 5.71E-04 4.26E-04		Pressure
Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	Z (pipet @ t) 22.25 21.75 21.45	DZp (cm) 1.05579 1.55579 1.85579	temp (deg C) 21 21	A (temp corr) 0.977 0.977 0.977	k (cm/sec) 2.01E-07 1.50E-07 1.20E-07	28.00 k (ft./day) 5.71E-04 4.26E-04 3.41E-04		Pressure
Date 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	Z (pipet @ t) 22.25 21.75	DZp (cm) 1.05579 1.55579	temp (deg C) 21 21	a (temp corr) 0.977 0.977	Fradient = k (cm/sec) 2.01E-07 1.50E-07	28.00 k (ft./day) 5.71E-04 4.26E-04		Pressure
Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	Z (pipet @ t) 22.25 21.75 21.45 21.15	DZp (cm) 1.05579 1.55579 1.85579 2.15579	temp (deg C) 21 21 21 21 21 SUMM	A (temp corr) 0.977 0.977 0.977 0.977	k (cm/sec) 2.01E-07 1.50E-07 1.20E-07	28.00 k (ft./day) 5.71E-04 4.26E-04 3.41E-04 3.00E-04	Reset = *	
Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	Z (pipet @ t) 22.25 21.75 21.45 21.15	DZp (cm) 1.05579 1.55579 1.85579	temp (deg C) 21 21 21 21 21 SUMM	A (temp corr) 0.977 0.977 0.977 0.977 ARY	k (cm/sec) 2.01E-07 1.50E-07 1.20E-07	28.00 k (ft./day) 5.71E-04 4.26E-04 3.41E-04 3.00E-04		
Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	Z (pipet @ t) 22.25 21.75 21.45 21.15 Ka = ki	DZp (cm) 1.05579 1.55579 1.85579 2.15579 1.44E-07	temp (deg C) 21 21 21 21 21 SUMM	A (temp corr) 0.977 0.977 0.977 0.977 ARY	k (cm/sec) 2.01E-07 1.50E-07 1.06E-07	28.00 k (ft./day) 5.71E-04 4.26E-04 3.41E-04 3.00E-04	Reset = *	%
Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	Z (pipet @ t) 22.25 21.75 21.45 21.15 ka = ki k1 =	DZp (cm) 1.05579 1.55579 1.85579 2.15579 1.44E-07	temp (deg C) 21 21 21 21 SUMM cm/sec	A (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 39.5	k	28.00 k (ft./day) 5.71E-04 4.26E-04 3.41E-04 3.00E-04	Reset = * 50 ka-ki	
Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	Z (pipet @ t) 22.25 21.75 21.45 21.15 ka = ki k1 = k2 =	DZp (cm) 1.05579 1.55579 1.85579 2.15579 1.44E-07 2.01E-07 1.50E-07	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec	ARY Wm 39.5 4.0	k	28.00 k (ft./day) 5.71E-04 4.26E-04 3.41E-04 3.00E-04 criteria =	Reset = *	%
Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900	Z (pipet @ t) 22.25 21.75 21.45 21.15 ka = ki k1 =	DZp (cm) 1.05579 1.55579 1.85579 2.15579 1.44E-07	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec	A (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 39.5	k	28.00 k (ft./day) 5.71E-04 4.26E-04 3.41E-04 3.00E-04 criteria =	Reset = * 50 ka-ki	%
Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900 1200	Z (pipet @ t) 22.25 21.75 21.45 21.15 ka = ki k1 = k2 = k3 = k4 =	DZp (cm) 1.05579 1.55579 1.85579 2.15579 1.44E-07 2.01E-07 1.50E-07 1.20E-07 1.06E-07	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	ARY Vm 39.5 4.0 16.7 26.8	k (cm/sec) 2.01E-07 1.50E-07 1.20E-07 Acceptance % % %	28.00 k (ft./day) 5.71E-04 4.26E-04 3.41E-04 3.00E-04 criteria =	Reset = * 50 ka-ki	%
Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900 1200	Z (pipet @ t) 22.25 21.75 21.45 21.15 ka = ki k1 = k2 = k3 =	DZp (cm) 1.05579 1.55579 1.85579 2.15579 1.44E-07 2.01E-07 1.50E-07 1.20E-07	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 1.44E-07	ARY Vm 39.5 4.0 16.7	k (cm/sec) 2.01E-07 1.50E-07 1.20E-07 1.06E-07 Acceptance % %	28.00 k (ft./day) 5.71E-04 4.26E-04 3.41E-04 3.00E-04 criteria =	Reset = * 50 ka-ki	%
Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900 1200 Hydraulic c Void Ratio	Z (pipet @ t) 22.25 21.75 21.45 21.15 ka = ki k1 = k2 = k3 = k4 =	DZp (cm) 1.05579 1.55579 1.85579 2.15579 1.44E-07 2.01E-07 1.50E-07 1.20E-07 1.06E-07	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 1.44E-07	ARY Vm 39.5 4.0 16.7 26.8	k (cm/sec) 2.01E-07 1.50E-07 1.20E-07 Acceptance % % %	28.00 k (ft./day) 5.71E-04 4.26E-04 3.41E-04 3.00E-04 criteria =	Reset = * 50 ka-ki	%
Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900 1200 Hydraulic c Void Ratio Porosity	Z (pipet @ t) 22.25 21.75 21.45 21.15 Ka = ki k1 = k2 = k3 = k4 = conductivity	DZp (cm) 1.05579 1.55579 1.85579 2.15579 1.44E-07 2.01E-07 1.50E-07 1.20E-07 1.06E-07	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 1.44E-07	ARY Vm 39.5 4.0 16.7 26.8 Cm/sec	k (cm/sec) 2.01E-07 1.50E-07 1.20E-07 1.06E-07 Acceptance % % % % 4.09E-04	28.00 k (ft./day) 5.71E-04 4.26E-04 3.41E-04 3.00E-04 criteria = Vm =	Reset = * 50 ka-ki	%
Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900 1200 Hydraulic c Void Ratio Porosity Bulk Densit	Z (pipet @ t) 22.25 21.75 21.45 21.15 ka = ki k1 = k2 = k3 = k4 = conductivity	DZp (cm) 1.05579 1.55579 1.85579 2.15579 2.15579 1.44E-07 2.01E-07 1.50E-07 1.20E-07 1.06E-07	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 1.44E-07	A (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 39.5 4.0 16.7 26.8 cm/sec	k (cm/sec) 2.01E-07 1.50E-07 1.20E-07 1.06E-07 Acceptance % % % % 4.09E-04	28.00 k (ft./day) 5.71E-04 4.26E-04 3.41E-04 3.00E-04 criteria = Vm =	Reset = * 50 ka-ki	%
Date 8/9/2016 8/9/2016 8/9/2016	elapsed t (seconds) 300 600 900 1200 Hydraulic c Void Ratio Porosity	Z (pipet @ t) 22.25 21.75 21.45 21.15 ka = ki k1 = k2 = k3 = k4 = conductivity	DZp (cm) 1.05579 1.55579 1.85579 2.15579 1.44E-07 2.01E-07 1.50E-07 1.20E-07 1.06E-07	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec 1.44E-07	ARY Vm 39.5 4.0 16.7 26.8 Cm/sec	k (cm/sec) 2.01E-07 1.50E-07 1.20E-07 1.06E-07 Acceptance % % % % 4.09E-04	28.00 k (ft./day) 5.71E-04 4.26E-04 3.41E-04 3.00E-04 criteria = Vm =	Reset = * 50 ka-ki	%

APPENDIX C SUPPORTING DOCUMENTS

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

						Water Initially Encountered		(HP)	Hand Penetrometer
	Auger	Shelby Tube	Split Spoon		<u></u>	Water Level After a Specified Period of Time		(T)	Torvane
වු	Ш		M	LEVEL	$\overline{\nabla}$	Water Level After a Specified Period of Time	STS	(b/f)	Standard Penetration Test (blows per foot)
PLIN	Rock Core	Macro Core	Modified California Ring Sampler	R LE		s indicated on the soil boring levels measured in the	D TE	N	N value
SAMPL	en,	\Box		WATEF	borehole at	the times indicated.	료	(PID)	Photo-Ionization Detector
	Grab Sample	No Recovery [Modified Dames & Moore Ring Sampler		over time. Ir accurate de levels is not	n low permeability soils, etermination of groundwater t possible with short term observations.		(OVA)	Organic Vapor Analyzer

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	(More than Density determin	NSITY OF COARSE-GRAI n 50% retained on No. 200 led by Standard Penetration des gravels, sands and sil	sieve.) on Resistance	CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance				
TERMS	Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength, Qu, tsf	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.	
뿔	Very Loose	0 - 3	0 - 6	Very Soft	less than 0.25	0 - 1	< 3	
NGTI	Loose	4 - 9	7 - 18	Soft	0.25 to 0.50	2 - 4	3 - 4	
TREN	Medium Dense	10 - 29	19 - 58	Medium-Stiff	0.50 to 1.00	4 - 8	5 - 9	
ြ	Dense	30 - 50	59 - 98	Stiff	1.00 to 2.00	8 - 15	10 - 18	
	Very Dense > 50 ≥ 99		<u>></u> 99	Very Stiff	Very Stiff 2.00 to 4.00 15 - 3		19 - 42	
				Hard	> 4.00	> 30	> 42	

RELATIVE PROPORTIONS OF SAND AND GRAVEL

<u>Descriptive Term(s)</u>	Percent of	<u>Major Component</u>	Particle Size
of other constituents	Dry Weight	<u>of Sample</u>	
Trace With Modifier	< 15 15 - 29 > 30	Boulders Cobbles Gravel Sand Silt or Clay	Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

GRAIN SIZE TERMINOLOGY

PLASTICITY DESCRIPTION

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents	Percent of Dry Weight	<u>Term</u>	Plasticity Index
of other constituents	<u>Dry weight</u>	Non-plastic	0
Trace	< 5	Low	1 - 10
With	5 - 12	Medium	11 - 30
Modifier	> 12	High	> 30

UNIFIED SOIL CLASSIFICATION SYSTEM

				5	Soil Classification
Criteria for Assigr	ning Group Symbols	and Group Names	s Using Laboratory Tests ^A	Group Symbol	Group Name ^B
	Gravels:	Clean Gravels:	Cu ≥ 4 and 1 ≤ Cc ≤ 3 ^E	GW	Well-graded gravel F
	More than 50% of	Less than 5% fines ^C	% fines ^C Cu < 4 and/or 1 > Cc > 3 ^E		Poorly graded gravel F
		Gravels with Fines:	Fines classify as ML or MH	GM	Silty gravel F,G,H
Coarse Grained Soils:	on No. 4 sieve	More than 12% fines ^C	Fines classify as CL or CH	GC	Clayey gravel F,G,H
More than 50% retained on No. 200 sieve	Sands:	Clean Sands:	Cu ≥ 6 and 1 ≤ Cc ≤ 3 ^E	SW	Well-graded sand I
011110. 200 Sieve	50% or more of coarse	Less than 5% fines D	Cu < 6 and/or 1 > Cc > 3 ^E	SP	Poorly graded sand ¹
	fraction passes No. 4	Sands with Fines:	Fines classify as ML or MH	SM	Silty sand G,H,I
	sieve	More than 12% fines D	Fines classify as CL or CH	SC	Clayey sand G,H,I
		Ingraphic	PI > 7 and plots on or above "A" line J	CL	Lean clay K,L,M
	Silts and Clays:	Inorganic:	PI < 4 or plots below "A" line J	ML	Silt K,L,M
	Liquid limit less than 50	Organic:	Liquid limit - oven dried < 0.75	OL	Organic clay K,L,M,N
Fine-Grained Soils:		Organic.	Liquid limit - not dried	OL	Organic silt K,L,M,O
50% or more passes the No. 200 sieve		Inorganic:	PI plots on or above "A" line	CH	Fat clay K,L,M
. 10. 200 0.010	Silts and Clays:	inorganic.	PI plots below "A" line	MH	Elastic Silt K,L,M
	Liquid limit 50 or more	Organia	Liquid limit - oven dried	ОН	Organic clay K,L,M,P
		Organic:	Liquid limit - not dried < 0.75	ОП	Organic silt K,L,M,Q
Highly organic soils:	Primarily	organic matter, dark in o	color, and organic odor	PT	Peat

^A Based on the material passing the 3-inch (75-mm) sieve

^E
$$Cu = D_{60}/D_{10}$$
 $Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}}$

^Q PI plots below "A" line.

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.

D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

 $^{^{\}text{F}}$ If soil contains \geq 15% sand, add "with sand" to group name.

 $^{^{\}rm G}$ If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

^H If fines are organic, add "with organic fines" to group name.

¹ If soil contains ≥ 15% gravel, add "with gravel" to group name.

^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.

K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.

 $^{^{\}text{L}}$ If soil contains \geq 30% plus No. 200 predominantly sand, add "sandy" to group name.

M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.

^N PI ≥ 4 and plots on or above "A" line.

 $^{^{\}text{O}}$ PI < 4 or plots below "A" line.

P PI plots on or above "A" line.

DESCRIPTION OF ROCK PROPERTIES

WEATHERING

Fresh Rock fresh, crystals bright, few joints may show slight staining. Rock rings under hammer if crystalline.

Very slight Rock generally fresh, joints stained, some joints may show thin clay coatings, crystals in broken face show

bright. Rock rings under hammer if crystalline.

Slight Rock generally fresh, joints stained, and discoloration extends into rock up to 1 in. Joints may contain clay. In

granitoid rocks some occasional feldspar crystals are dull and discolored. Crystalline rocks ring under hammer.

Moderate Significant portions of rock show discoloration and weathering effects. In granitoid rocks, most feldspars are dull

and discolored; some show clayey. Rock has dull sound under hammer and shows significant loss of strength

as compared with fresh rock.

Moderately severe All rock except quartz discolored or stained. In granitoid rocks, all feldspars dull and discolored and majority

show kaolinization. Rock shows severe loss of strength and can be excavated with geologist's pick.

Severe All rock except quartz discolored or stained. Rock "fabric" clear and evident, but reduced in strength to strong

soil. In granitoid rocks, all feldspars kaolinized to some extent. Some fragments of strong rock usually left.

Very severe All rock except quartz discolored or stained. Rock "fabric" discernible, but mass effectively reduced to "soil" with

only fragments of strong rock remaining.

Complete Rock reduced to "soil". Rock "fabric" not discernible or discernible only in small, scattered locations. Quartz may

be present as dikes or stringers.

HARDNESS (for engineering description of rock – not to be confused with Moh's scale for minerals)

Very hard Cannot be scratched with knife or sharp pick. Breaking of hand specimens requires several hard blows of

geologist's pick.

Hard Can be scratched with knife or pick only with difficulty. Hard blow of hammer required to detach hand specimen.

Moderately hard Can be scratched with knife or pick. Gouges or grooves to ¼ in. deep can be excavated by hard blow of point of

a geologist's pick. Hand specimens can be detached by moderate blow.

Medium Can be grooved or gouged 1/16 in. deep by firm pressure on knife or pick point. Can be excavated in small

chips to pieces about 1-in. maximum size by hard blows of the point of a geologist's pick.

Soft Can be gouged or grooved readily with knife or pick point. Can be excavated in chips to pieces several inches in

size by moderate blows of a pick point. Small thin pieces can be broken by finger pressure.

Very soft Can be carved with knife. Can be excavated readily with point of pick. Pieces 1-in. or more in thickness can be

broken with finger pressure. Can be scratched readily by fingernail.

Joint, Bedding, and Foliation Spacing in Rock ^a			
Spacing	Joints	Bedding/Foliation	
Less than 2 in.	Very close	Very thin	
2 in. – 1 ft.	Close	Thin	
1 ft. – 3 ft.	Moderately close	Medium	
3 ft. – 10 ft.	Wide	Thick	
More than 10 ft.	Very wide	Very thick	

a. Spacing refers to the distance normal to the planes, of the described feature, which are parallel to each other or nearly so.

Rock Quality Designator (RQD) a		
RQD, as a percentage	Diagnostic description	
Exceeding 90	Excellent	
90 – 75	Good	
75 – 50	Fair	
50 – 25	Poor	
Less than 25	Very poor	

Joint Openness Descriptors			
Openness	Descriptor		
No Visible Separation	Tight		
Less than 1/32 in.	Slightly Open		
1/32 to 1/8 in.	Moderately Open		
1/8 to 3/8 in.	Open		
3/8 in. to 0.1 ft.	Moderately Wide		
Greater than 0.1 ft.	Wide		

4 in. and longer/length of run.

References: American Society of Civil Engineers. Manuals and Reports on Engineering Practice - No. 56. Subsurface Investigation for Design and Construction of Foundations of Buildings. New York: American Society of Civil Engineers, 1976. U.S. Department of the Interior, Bureau of Reclamation, Engineering Geology Field Manual.

a. RQD (given as a percentage) = length of core in pieces